Refine Your Search

Topic

Search Results

Technical Paper

Overview of Truck Accidents in India and Its Economic Loss Estimation

2021-09-22
2021-26-0007
India contributed to 11% of the global road accidents and was ranked 1st among road deaths according to the latest World Health Organization (WHO) report 2018. Indian National Highways (NH) is a meagre 5% of the country’s road network but accounts for 55% of the road accidents and 61% of the road deaths. Majority of the freight traffic is ferried by Commercial Vehicles (CV) or trucks along these highways and this in turn increases the probability of them being involved in a road accident. The country’s economy is forecasted to thrive in the coming years and hence the requirement of CVs is aligned to international categorisation in the supply chain and shall play a pivotal role. In the year 2019, 13,532 road deaths were associated with CV occupants. The trucking industry is an unorganized sector wherein the illegal overloading of vehicles and over-the-limit driving hours pose a serious threat to road users.
Journal Article

Estimation of Socio-Economic Loss due to Road Traffic Accidents in India

2021-09-22
2021-26-0012
India witnessed 151,113 road deaths in the year 2019 and this alarming number is due to increased urbanization, motorization and per capita income. India is home to the 2nd largest road network in the world and accounts for the highest number of road deaths globally. Curbing the menace of road accidents requires tactical road safety policies and their effective implementation. The meagre availability of factual data regarding socio-economic loss due to road accidents is proving to be a hindrance to the ideation and implementation of the policies. The Planning Commission estimated the social costs of road accidents to be 7.9 billion $ in 1999/2000 which was roughly 3% of the country’s GDP and this value was revised to 14.3 billion $ in 2011. Absence of data regarding the loss due to road accidents in the recent times, has been a motivating factor to estimate the socio economic loss due to accidents on Indian roads.
Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
Technical Paper

Multi Domain Modeling of NVH for Electro-Mechanical Drives

2020-09-30
2020-01-1584
Acoustics and vibrations are amongst the foremost indicators in perceiving the quality of drive units. Analyzing these factors is vital for improve the performances of electro-mechanical systems. This paper deals with the study of vibro-acoustic behavior concerning the drivetrain components using system modeling and Finite Element calculations. A generic simulation methodology within system modeling is proposed enabling the vibro-acoustic simulation of electro-mechanical drivetrains. Excitations for these systems mostly arise from the electric motor and mechanical gears. The paper initially depicts the system model for gear whining considering the associated nonlinearities of the mesh. The results obtained from the gear mesh submodel, together with the excitations resulting from the motor, aid in the comprehension of the forces at the bearings and of the vibrations at the housings.
Technical Paper

Analyze This! Sound Static Analysis for Integration Verification of Large-Scale Automotive Software

2019-04-02
2019-01-1246
Safety-critical embedded software has to satisfy stringent quality requirements. One such requirement, imposed by all contemporary safety standards, is that no critical run-time errors must occur. Runtime errors can be caused by undefined or unspecified behavior of the programming language; examples are buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. A sound static analyzer reports all such defects in the code, or proves their absence. Sound static program analysis is a verification technique recommended by ISO/FDIS 26262 for software unit verification and for the verification of software integration. In this article we propose an analysis methodology that has been implemented with the static analyzer Astrée. It supports quick turn-around times and gives highly precise whole-program results.
Technical Paper

Comprehensive Study on Crashes with Pedestrians on Indian Roads

2019-01-09
2019-26-0004
Pedestrian crashes are a major safety concern worldwide, especially in India. About one of every ten traffic-related fatalities in the country is a pedestrian. In 2016 nearly 15,800 pedestrians were killed in India. They were mainly exposed to risk when crossing and walking on the road in urban and rural areas. The aim of the study was to understand the pedestrian behavior on the road and to identify characteristics of pedestrian crashes in India. Many unique behavior was observed like pedestrian crossed half way and stopped in middle of road. Nearly 10% of pedestrians are fatal each year involving in ~5% of overall accidents in India, This study revels every second pedestrian accident occurred while walking and crossing the road straight.
Technical Paper

Loss of Control Car Accidents on Indian Roads - Benefit Estimation of ESC

2019-01-09
2019-26-0009
India has one of the highest growth rates of individual mobility in the world, as well as one of the largest numbers of road casualties. Modern active safety systems are slowly becoming established in the Indian passenger car market. The intension of this study is to investigate the effectiveness of the car safety feature Electronic Stability Control (ESC) for India. The Indian accidents has to be analysed to identify the reliable root cause. For this purpose, passenger car Loss of Control accidents were investigated in more detail with the aim of estimating the safety potential of ESC for India. A methodology is developed to extrapolate the in-depth accident database of Road Accident Sampling System for India (RASSI) to the entire accident situation in India. Loss of Control accidents are analysed with regard to their root causes, crash consequences and contributing factors.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Analysis of Non-Police Reported Accidents on Indian Highways

2017-01-10
2017-26-0005
The official Indian accident statistics show that the number of road accidents and fatalities are one of the highest worldwide. These official statistics provide important facts about the current accident situation. It is suspected that for various reasons not all accidents are reported to the official statistic. This study estimates the degree of underreporting of traffic accidents with casualties in India. In order to get a national overview of the traffic accident situation it is necessary to improve the knowledge about underreported accidents. Therefore, the in-depth accident database of “Road Accident Sampling System India” (RASSI) was analyzed [1]. This project is organized by a consortium that has collected traffic accidents scientifically in four different regions since 2011 on the spot which have been reported either by police or by local hospitals and own patrol by RASSI engineers.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Benefit Estimation of Anti-Lock Braking System for Powered Two Wheeler On Indian Highways

2015-01-14
2015-26-0167
Motorized two wheelers, also known as powered two wheelers (PTW) are the most common mode of transportation in India. Around one in four deaths that occurred on the roads in India in 2012 involved a motorcyclist, according to Ministry of Road Transport and Highways. This constitutes the highest contributor for fatal accidents in India [1]. The European Transport Safety Council (ETSC) analysis shows the risk of a motorcyclist having a fatal accident is 20 times greater than for a car driver travelling the same route [2]. An investigation conducted by Bosch looked at the accident database of Road Accident Sampling System for India (RASSI). This investigation revealed interesting facts about the Indian motorcycle accident situation, such as root causes of powered two wheeler collisions and riders behaviour including their braking patterns during the pre-crash phase of the accident.
Technical Paper

Behaviour of Car Drivers in Accidents used to Estimate the Benefit of Car Antilock Brake System on Indian Highways

2015-01-14
2015-26-0172
In the year of 2012 in India the total number of accidents with injuries is registered by Ministry of Road Transport and Highway with 490,383 out of which injured people are 509,667 and fatalities are 138,258 [1]. Nearly 17% of the fatalities are occupants of passenger cars which constitute the second highest contributor for fatal accidents in India [1]. In order to understand the root causes for car accidents in India, Bosch accident research carried out a study based on in-depth accidents collected in India. Apart from other accident contributing factors e.g. infrastructure the driver behaviour and his actions few milliseconds just prior to the crash is an extremely important and a key valuable data for the understanding of accident causation. Further on it supports also the development of modern automotive safety functions. Hence this research was undertaken to evaluate the benefit of the state-of-the art vehicle safety systems known as Antilock Braking System (ABS).
Technical Paper

Representativeness and Weighting Methods of Real Time Accident Data in India

2013-01-09
2013-26-0022
The 2011 Report of Ministry of Road Transport and Highways, Government of India states that the total accidents with injuries is estimated about 497, 686 out of which the injuries are 511, 394 and fatalities are 142, 485, an average of one fatality per 3.5 [1]. Social losses on account of these crashes are estimated at over Rupees 100 000 Crores annually or 3% of our Gross Domestic Product (GDP) [2]. The irony is that these causalities are rising at 5.9 % annually. India accounts for 10% of the global road crash fatalities. Therefore traffic safety became very important in India. In order to understand the root causes of accidents data is needed in more detail which could be analyzed and points out the major issues to find solutions to stop this trend. Besides vehicle safety, infrastructure related issues and education skills can be derived out of accident data. Official statistics regarding accidents in India are available in national and state wise reports.
Technical Paper

Towards “Vision Zero”

2012-04-16
2012-01-0288
“Safe Driving” is an essential world-wide automotive requirement. The demand for “Safe Driving” is particularly high in industrialized countries, but it is also growing in the fast-developing nations. However, the annual reduction of serious traffic injuries and fatalities is still too low and the target to halve the number of people killed in traffic in the European Union from 2001 to 2010 has not been met. Essential influences to close this gap include legislation, road traffic regulations and monitoring, technical improvement of vehicles including active and passive safety systems, the increase of the equipment rate for safety functions and the re-design of traffic infrastructure for safety reasons. During the last years several countries in Europe started to consider these aspects combined in an integrated and general traffic safety policy, i.e. “Vision Zero” in Sweden.
Technical Paper

More Safety with Vehicle Stability Control

2007-01-28
2007-01-2759
Since introduction of safety belts in the 70s and airbags in the early 80s, these passive safety technologies have become standard in many markets. Remarkable improvement in passive safety, efforts to alter driver behaviour and infrastructural programmes have led to substantial reductions of fatalities in many regions, although the absolute number of highway fatalities increased e.g. in the USA in 2002 to the highest level since 1990. Electronic Stability Control (ESC) as an active safety technology assists the driver to keep the vehicle on the intended track and thereby actively prevents accidents. In 1995 Bosch was the first supplier to introduce ESC for the Mercedes-Benz S-Class, where it is marketed as ESP® - Electronic Stability Program. Since then, Bosch has produced more than 30 million systems worldwide. Many studies have now confirmed that ESC can prevent a vehicle from skidding or rolling over in nearly all driving situations.
Technical Paper

Improved Occupant Protection through Cooperation of Active and Passive Safety Systems – Combined Active and Passive Safety CAPS

2006-01-03
2006-01-1144
One of the most important aims of the automotive industry is to provide the best possible protection for drivers, passengers and pedestrians. Through their CAPS (Combined Active and Passive Safety) program (see Figure 1), Bosch is developing new functions which help to achieve these goals and contribute to accident mitigation and/or reduction of accident severity. By linking existing active and passive automobile safety systems and extending these by adding systems for monitoring and evaluating the vehicle's environment, the foundation for new safety functions is created. The growing number of airbags in vehicles provides more and better protection against injury for the occupants. In addition, active safety systems such as the ESP® Electronic Stability Program help to prevent an accident occurring in the first place. If these systems are linked together, they can share information and provide even better safety for drivers and passengers through new functions.
Technical Paper

System Architecture and Algorithm for Advanced Passive Safety by Integration of Surround Sensing Information

2005-04-11
2005-01-1233
Surround sensing methods provide information which can be used in PRECRASH functionalities for advanced control of the passenger protection system. The relevant data (closing velocity (cv), time to impact (tti), and offset of contact point (Δy)) are determined with a Predictive Safety System and transmitted to the airbag control unit for further processing in the PRECRASH algorithm. The PRECRASH algorithm controls both, the activation of reversible restraints and the deployment of irreversible restraints. Therefore it consists of two components: The PREFIRE and the PRESET algorithm. The PREFIRE algorithm uses the PRECRASH information for the activation of the reversible belt pretensioner in advance of a crash to reduce chest load in the crash phase. The PRESET algorithm calculates the trigger decision for deployment of pyrotechnical restraints. Inputs of the PRESET algorithm are the PRECRASH information as well as the acceleration signal.
Technical Paper

Safety and Performance Enhancement: The Bosch Electronic Stability Control (ESP)

2004-10-18
2004-21-0060
In spite of improvements in passive safety and efforts to alter driver behavior, the absolute number of highway fatalities in 2002 increased to the highest level since 1990 in the US. ESP is an active safety technology that assists the driver to keep the vehicle on the intended path and thereby helps to prevent accidents. ESP is especially effective in keeping the vehicle on the road and mitigating rollover accidents which account for over 1/3 of all fatalities in single vehicle accidents. In 1995 Bosch was the first supplier to introduce electronic stability control (ESC) for the Mercedes-Benz S-Class sedan. Since then, Bosch has produced more than 10 million systems worldwide which are marketed as ESP - Electronic Stability Program. In this report Bosch will present ESP contributions to active safety and the required adaptations to support four wheel driven vehicles and to mitigate rollover situations.
Technical Paper

A New Sensing Concept for Tripped Rollovers

2004-03-08
2004-01-0340
This paper describes a new system for early detection of tripped rollover crashes. The main goal of this system is to improve the protection of restraint devices, such as curtain window bags, in these rollover situations. This is achieved by a new rollover sensing (RoSe) algorithm in the airbag controller which produces a very early and robust deployment decision. Based on the analysis of tripped rollover test data, this paper shows how improved rollover sensing performance can be achieved by considering information about the vehicle's driving state before the rollover occurs. The results of this new approach are discussed in terms of deployment times. Finally a combined active and passive safety system architecture for the realization of the approach is suggested.
Technical Paper

Active Pedestrian Protection - System Development

2004-03-08
2004-01-1604
Pedestrian protection is an upcoming field for research and development. Active pedestrian protection is described from a system perspective. In this view, the development of an active pedestrian protection system is shown. First an overview on statistics and legal requirements is given and the system requirements are discussed. Sensor concepts and realizations are shown, also different test methods and results are explained. FE-simulations to complete and later replace additional tests are developed, after cross check with the experimental results. In combination with the shown actuator concept this leads to a full functioning active pedestrian protection system.
X