Refine Your Search

Topic

Search Results

Technical Paper

A Novel Approach to Constructing Reactivity-Based Simplified Combustion Model for Dual Fuel Engine

2023-10-31
2023-01-1627
To achieve higher efficiencies and lower emissions, dual-fuel strategies have arisen as advanced engine technologies. In order to fully utilize engine fuels, understanding the combustion chemistry is urgently required. However, due to computation limitations, detailed kinetic models cannot be used in numerical engine simulations. As an alternative, approaches for developing reduced reaction mechanisms have been proposed. Nevertheless, existing simplified methods neglecting the real engine combustion processes, which is the ultimate goal of reduced mechanism. In this study, we propose a novel simplified approach based on fuel reactivity. The high-reactivity fuel undergoes pyrolysis first, followed by the pyrolysis and oxidation of the low-reactivity fuel. Therefore, the simplified mechanism consists of highly lumped reactions of high-reactivity fuel, radical reactions of low-reactivity fuel and C0-C2 core mechanisms.
Technical Paper

Analysis of Energy and Exergy Distribution for Improving Fuel Economy of Marine Low-speed Two-stroke Diesel Engine

2022-03-29
2022-01-0392
Increasingly strict emission regulations and unfavorable economic climate bring severe challenges to the energy conservation of marine low-speed engine. Besides traditional methods, the energy and exergy analysis could acknowledge the losses of fuel from a global perspective to further improve the engine efficiency. Therefore, the energy and exergy analysis is conducted for a marine low-speed engine based on the experimental data. Energy analysis shows the exhaust gas occupies the largest proportion of all fuel energy waste, and it rises with the increment of engine load. The heat transfer consumes the second largest proportion, while it is negatively correlated to engine load. The energy analysis indicates that the most effective way to improve the engine efficiency is to reduce the energy wasted by exhaust gas and heat transfer. However, the latter exergy analysis demonstrates that there are other effective approaches to improve the engine efficiency.
Technical Paper

CFD Modeling of Impinging Sprays Under Large Two-Stroke Marine Engine-Like Conditions

2022-03-29
2022-01-0493
To improve the combustion and emission characteristics of the large-bore marine engines, the spray is usually designed as an inter-spray impingement to promote the fuel-air mixing process, which implies frequent droplet collisions. Properly describing the collision dynamics of liquid droplets has been of interest in the field of spray modeling for marine engine applications. In this context, this work attempts to develop an accurate and efficient methodology for modeling impinging sprays under engine-like conditions. Experimental validations in terms of spray penetration and morphology are initially carried out at different operating conditions considering the parametric variations of ambient temperature and pressure, where the measurements are performed on a large-scale constant volume chamber with two symmetrical injectors.
Technical Paper

Nozzle Tip Wetting in GDI Injector and Its Link with Nozzle Spray Hole Length

2022-03-29
2022-01-0498
Fuel film deposited on fuel injector tips used in gasoline direct injection engines, otherwise known as nozzle tip wetting, has been identified as an essential source of particle emissions. Attempts have been made to reduce nozzle tip wetting by the optimization design of nozzle geometry parameters. However, relevant investigations are still limited to emission measurements and corresponding indirect analysis. Due to the lack of related visualization research, the mechanism of nozzle tip wetting formation and its link with nozzle internal flow are still unclear. To clarify the influence of spray hole length on nozzle tip wetting and the underlying mechanisms, the dynamic formation process and the fuel film area evolution of nozzle tip wetting were visualized directly using laser-induced fluorescence technique and photomicrography technique.
Technical Paper

Combustion and Emissions Improved by Using Flash Boiling Sprays and High-Energy Ignition Technologies in an Ethanol-Gasoline Optical Engine

2021-04-06
2021-01-0472
To alleviate the shortage of petroleum resources and the air pollution caused by the burning of fossil fuels, the development of renewable fuels has attracted widespread attention. Among the various renewable fuels, ethanol can be produced from biomass and does not require much modification when applied to practical engines, so it has been widely used. However, ethanol fuel has a higher heat of vaporization than gasoline, it is difficult to evaporate and atomize under cold start conditions. Besides, the catalyst has not reached the conversion temperature at this time, resulting in lower conversion efficiency. These factors all lead to higher pollutant emission levels in ethanol-gasoline blends. To solve the above problems, this research used visualization techniques to compare the effects of flash boiling and high-energy ignition technologies on the in-cylinder combustion process and pollutant emission of ethanol-gasoline blends fuel.
Technical Paper

Unmanned Terminal Vehicle Positioning System Based on Roadside Single-Line Lidar

2021-03-02
2021-01-5029
With the development of economic globalization, the speed of development of container terminals is also very rapid. Under the pressure brought by the surge in throughput, the unmanned and intelligent terminals will become the future development direction of terminals. As the cornerstone of the unmanned terminal, the positioning technology provides the most basic position information for system scheduling, path planning, real-time correction, and loading and unloading. Therefore, this paper is aimed to design a low-cost, high-precision, and easy-to-maintain unmanned dock positioning system in order to better solve the problem of unmanned dock positioning. The main research content of this paper is to design a positioning algorithm for unmanned terminal Automated Guided Vehicle (AGV) based on single-line lidar, including point cloud data acquisition, background filtering, point cloud clustering, vehicle position extraction, and result optimization.
Technical Paper

Experimental Investigation of Injection Strategies to Improve Intelligent Charge Compression Ignition (ICCI) Combustion with Methanol and Biodiesel Direct Injection

2020-09-15
2020-01-2072
Applications of methanol and biodiesel in internal combustion engines have raised widespread concerns, but there is still huge scope for improvement in efficiency and emissions. The brand-new combustion mode, named as Intelligent Charge Compression Ignition (ICCI) combustion, was proposed with methanol-biodiesel dual fuel direct injection. In this paper, effects of injection parameters such as two-stage split-injections, injection timings, injection pressure and intake pressure on engine combustion and emissions were investigated at IMEP = 8, 10, and 12 bar. Results show that the indicated thermal efficiency up to 53.5% and the NOx emissions approaching to EURO VI standard can be obtained in ICCI combustion mode.
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
Technical Paper

Investigation of the Impacts of Spark Plug Orientation on Combustion Stability under Lean SI Operation

2020-04-14
2020-01-1121
The increasingly stringent restrictions on vehicle emissions and fuel consumption are driving the development of gasoline engines towards lean combustion. Increasing ignition energy has been considered an effective way to achieve lean operation conditions. To further improve the lean limit of engine combustion, the influence of the spark plug orientation on the combustion stability under lean operation should be explored. In this investigation, the original machine spark plug orientation, 90 degrees clockwise rotation, and 180 degrees clockwise rotation are studied to analyze the impact of spark plug orientation. The combustion experiment was carried out under the condition of low excess air ratio of the original machine and high excess air ratio with a 450 mA high energy ignition.
Technical Paper

Effect of Spray Characteristics on the Combustion Process in an Optical Engine

2020-04-14
2020-01-0288
Flash boiling is considered a useful method in enhancing the liquid fuel jet break-up and spray atomization process for internal combustion engine applications. Spray atomization efficiency plays a vital role in the combustion process. Although some researches have demonstrated that flash boiling has the potential to improve the combustion efficiency and optimize emission-related issues, the effect of flash boiling spray characteristics on the combustion process has not been fully investigated. In this paper, spray characteristics and its related combustion process were studied via various non-intrusive diagnostics methods. The spray and combustion process under different test conditions were studied using an optical engine. It was found that by using flash boiling atomization, the combustion duration was reduced and IMEP enhanced significantly. Experimental results have built the relationship between flash boiling spray characteristics and the combustion performance in the engine.
Technical Paper

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

2020-04-14
2020-01-0294
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated. Measurements indicate that the optimization of spark timing has a significant impact on its performance.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Technical Paper

Numerical Investigation of the Effects of Port Water Injection Timing on Performance and Emissions in a Gasoline Direct Injection Engine

2020-04-14
2020-01-0287
Port water injection is considered as a promising strategy to further improve the combustion performance of internal combustion engines for its benefit in knock resistance by reducing the cylinder temperature. A thorough investigation of the port water injection technique is required to fully understand its effects on the engine combustion process. This study explores the potential of the port water injection technique in improving the performance of a turbo charged Gasoline Direct Injection engine. A 3D computational fluid dynamics model is applied to simulate the in-cylinder mixing and combustion for this engine both with and without water injection. Different water injection timings are investigated and it is found that the injection timing greatly effects the mass of water which enters the combustion chamber, both in liquid and vapor form.
Technical Paper

Experimental Study on the Characteristics of Short Circuits and Restrikes of Spark Channels

2020-04-14
2020-01-1123
Ignition performance is critical for the implementation of diluted combustion for spark-ignition engines. The short circuit and restrike phenomena can influence the initial ignition volume and discharge duration which are important for the stable ignition processes. In this study, the short circuits and restrikes of spark channels are studied with various flow velocities, spark plug gaps and discharge energies. The development of the spark channels is captured by using the direct imaging technique with a CMOS camera equipped with an image intensifier. A multi-coil ignition system is designed to enable flexible control of discharge energies. The results show that the spark plug gap size is a critical parameter to suppress the phenomena of short circuits and restrikes. With the enlargement of spark plug gap, the maximum and average lengths of the spark channel effectively increase.
Journal Article

Computational Modeling of Diesel Spray Combustion with Multiple Injections

2020-04-14
2020-01-1155
Multiple injection strategies are commonly used in conventional Diesel engines due to the flexibility for optimizing heat-release timing with a consequent improvement in fuel economy and engine-out emissions. This is also desirable in low-temperature combustion (LTC) engines since it offers the potential to reduce unburned hydrocarbon and CO emissions. To better utilize these benefits and find optimal calibrations of split injection strategies, it is imperative that the fundamental processes of multiple injection combustion are understood and computational fluid dynamics models accurately describe the flow dynamics and combustion characteristics between different injection events. To this end, this work is dedicated to the identification of suitable methodologies to predict the multiple injection combustion process.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Effects of Spark Timing with Other Engine Operating Parameters on the Particulate Emissions of a Dualinjection Gasoline Engine During Warm-up Conditions

2019-12-19
2019-01-2214
Gasoline direct injection (GDI) has been a mainstream technology due to its higher thermal efficiency and better power output. However, with increasingly stringent emission regulations introduced (EURO VI PN limits: 6 x l011#/km), high particulate matter (PM) emission of GDI engine has been a serious problem that limits its further development. Previous studies have found that cold-start and warm-up operation conditions play the dominant role in engine-out particulate emissions. In this paper, emission characteristics during the cold-start were first studied by controlling the coolant temperature. A Cambustion DMS500 fast particle spectrometer was employed to analyze the PM emissions. In order to reduce the engine-out emissions of cold-start, a dual injection system which combines port-fuel-injection (PFI) and direct-injection (DI) was applied in a four-cylinder gasoline engine.
Technical Paper

A New Positioning Device Designed for Aircraft Automated Alignment System

2019-09-16
2019-01-1883
Accurate and fast positioning of large aircraft component is of great importance for Automated Alignment System. The Ball joint is a widely-used mechanical device connecting the aircraft component and positioners. However, there are some shortcomings for the device in man-machine engineering, such as the entry state of the ball-head still needs to be confirmed by the workers and then switched to the locking state manually. To solve above problems, a new positioning mechanism is present in this paper, which consists of a ball-head and a ball-socket. The new device is equipped with a monocular vision system, in which a calibrated industrial camera is used to collect the images of the ball-head. And then, the 3-D coordinate of the ball-head center is calculated by a designed algorithm, guiding the positioner to capture the ball-head. Once the ball-head gets into the ball-socket, the pneumatic system will drive the pistons to move to the specified location.
Technical Paper

A Study of Energy Enhanced Multi-Spark Discharge Ignition in a Constant-Volume Combustion Chamber

2019-04-02
2019-01-0728
Multi-spark discharge (MSD) ignition is widely used in high-speed internal combustion engines such as racing cars, motorcycles and outboard motors in attempts to achieve multiple sparks during each ignition. In contrast to transistor coil ignition (TCI) system, MSD system can be greatly shortened the charging time in a very short time. However, when the engine speed becomes higher, the ignition will be faster, electrical energy stored in the ignition system will certainly become less, especially for MSD system. Once the energy released into the spark plug gap can’t be guaranteed sufficiently, ignition will become more difficult, and it will get worse in some harsh environment such as strong turbulence or lean fuel conditions. With these circumstances, the risks of misfire and partial combustion will increase, which can deteriorate the power outputs and exhaust emissions of internal combustion engine.
Technical Paper

Study of Flash Boiling Spray Combustion in a Spark Ignition Direct Injection Optical Engine Using Digital Image Processing Diagnostics

2019-04-02
2019-01-0252
Flash boiling spray has been proven to be a useful method in providing finer fuel droplet and stronger evaporation in favor of creating a homogeneous fuel-air mixture. Combustion characteristics of flash boiling spray are thus valuable to be investigated systematically for aiding the development of efficient internal combustion system. An experimental study of flash boiling spray combustion in a SIDI optical engine under early injection has been conducted. The fuel, Iso-octane, was used across all tests. Three fuel spray conditions experimented in the study: normal liquid, transitional flash boiling and flare flash boiling sprays, within each case that Pa/Ps ratio was set in (>1), (0.3~1), and (<0.3) respectively. A small quartz insert on the piston enables optical access for observing combustion process; non-intrusive measurements on flame radicals has been carried out using a high-speed color camera.
X