Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Evaluation of Ethanol Blends for Plug-In Hybrid Vehicles Using Engine in the Loop

2012-04-16
2012-01-1280
Their easy availability, lower well-to-wheel emissions, and relative ease of use with existing engine technologies have made ethanol and ethanol-gasoline blends a viable alternative to gasoline for use in spark-ignition (SI) engines. The lower energy density of ethanol and ethanol-gasoline blends, however, results in higher volumetric fuel consumption compared with gasoline. Also, the higher latent heat of vaporization can result in cold-start issues with higher-level ethanol blends. On the other hand, a higher octane number, which indicates resistance to knock and potentially enables more optimal combustion phasing, results in better engine efficiency, especially at higher loads. This paper compares the fuel consumption and emissions of two ethanol blends (E50 and E85) with those for gasoline when used in conventional (non-hybrid) and power-split-type plug-in hybrid electric vehicles (PHEVs).
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Technical Paper

A Mild Hybrid Vehicle Drive Train with a Floating Stator Motor-Configuration, Control Strategy, Design and Simulation Verification

2002-06-03
2002-01-1878
Significant amount of energy is lost in frequent braking, automatic transmission and engine idling for a conventional engine powered passenger car while driving in cities. In this paper, a mild hybrid vehicle drive train has been introduced. It uses a small electric motor with floating stator, called TRANSMOTOR and small and a battery pack. The transmotor functions as a generator, engine starter, frictionless clutch (electric torque coupler), regenerative braking and propelling. The mild hybrid drive train can effectively reduce the urban-driving fuel consumption by regenerative braking, eliminate of energy losses in conventional automatic transmission and engine idling. The drive train can use low voltage system (42V for example), due to the low electric power rating, and is more similar to conventional drive train than full hybrid vehicle. Therefore, less effort is needed to evolve it from conventional vehicles.
Technical Paper

Study of Hybrid Electric Vehicle Drive Train Dynamics Using Gyrator-Based Equivalent Circuit Modeling

2002-03-04
2002-01-1083
The main idea in the concept of advanced vehicles is to combine two or more power plants in order to improve the overall efficiency of the vehicle. The modeling of advanced vehicle is challenging, mainly because of the presence of several power plants in the system. After a presentation of the generalized equivalent circuit theory, including the electrical analogy and the theory of generalized gyrators and transformers, the modeling technique is compared to existing methods. Then, vehicle subsystems are modeled from the mechanical drive train to the different power plants and energy storages, according to the methodology. Some typical hybrid architectures are processed through the modeling technique and a final equivalent circuit is presented and discussed for each of them. Finally, the study of electromechanical interactions and mechanical transients is presented.
Technical Paper

Electronic Braking System of EV And HEV---Integration of Regenerative Braking, Automatic Braking Force Control and ABS

2001-08-20
2001-01-2478
The desirable braking system of a land vehicle is that it can stop the vehicle or reduce the vehicle speed as quickly as possible, maintain the vehicle direction stable and recover kinetic energy of the vehicle as much as possible. In this paper, an electronically controlled braking system for EV and HEV has been proposed, which integrates regenerative braking, automatic control of the braking forces of front and rear wheels and wheels antilock function together. When failure occurs in the electric system, the braking system can function as a conventional man-actuated braking system. Control strategies for controlling the braking forces on front and rear wheels, regenerative braking and mechanical braking forces have been developed. The braking energy that can be potentially recovered in typical driving cycle has been calculated. The antilock performance of the braking system has been simulated.
Technical Paper

Systematic Design of Fuel Cell Powered Hybrid Vehicle Drive Train

2001-08-20
2001-01-2532
A general design methodology of the fuel cell powered hybrid vehicle drive train has been developed. With the methodology and a computer simulation program, all of the systematic parameters can be designed, such as, the rated power of the electric motor drive, fuel cell system, peaking power source as well as the energy capacity. An overall control strategy has also been developed. The main function of the control strategy is to properly control the power produced by the fuel cell system and the peaking power source, so as to meet the power demand, maintain the energy level of the peaking power source in its optimal region and operate the fuel cell system within its high efficiency region. In this paper, a design example has also been introduced in each section.
Technical Paper

Design Issues of the Switched Reluctance Motor Drive for Propulsion and Regenerative Braking in EV and HEV

2001-08-20
2001-01-2526
There is a growing interest in electric and hybrid electric vehicles (EV and HEV) due to their high efficiency and low emission. In EV and HEV, the characteristic of the traction motor is essential for the performance and efficiency of the EV and HEV. In this paper, the advantages of the extended constant power range characteristic of the traction motor for both propulsion and regenerative braking are analyzed. Simulation results are presented to verify the conclusions. Due to its several inherent advantages, especially its capability of having an extended constant power range, Switched Reluctance Motor (SRM) is proposed as the candidate of the traction motor in EV and HEV. The design methodology of SRM for achieving an extended constant power range and the control strategy of SRM for regenerative braking in EV and HEV are presented.
Technical Paper

Investigation of the Effectiveness of Regenerative Braking for EV and HEV

1999-08-17
1999-01-2910
The possibility of recovering vehicle kinetic energy is one inherent advantage of electric and hybrid electric vehicles. When a vehicle drives in heavy traffic, for example in New York City, more than half of the total energy is dissipated in the brakes. Therefore, recovering braking energy is an effective approach for improving the driving range of EV and the energy efficiency of HEV. In this paper, three different braking patterns are investigated for evaluating the availability of braking energy recovery. The results indicate that even without active braking control, a significant amount of braking energy can be recovered, and the brake system does not need much changing from the brake systems of conventional passenger cars.
Technical Paper

Parametric Design of the Drive Train of an Electrically Peaking Hybrid (ELPH) Vehicle

1997-02-24
970294
The operation of an electrically peaking hybrid vehicle (ELPH) can be divided into two basic modes. • Constant or cruising speed mode in which a small internal combustion engine (ICE) is used to power the vehicle. • Peak power mode in which the combination of an electric motor and ICE is used to supply peak power for acceleration and limited-duration steep hill climbing of the vehicle. A method, by which the engine size and the speed reduction ratio from the engine to drivewheels can be developed based on the cruising mode, is presented in this paper. The electric motor power rating and the motor gear ratio to the drive wheels can then be determined, based on the acceleration and gradeability. The results show that a simple single-gear transmission would be a good selection for overall performance.
Technical Paper

A Versatile Computer Simulation Tool for Design and Analysis of Electric and Hybrid Drive Trains

1997-02-24
970199
This paper discusses a new computer simulation tool, V-Elph, which extends the capabilities of previous modeling and simulation efforts by facilitating in-depth studies of any type of hybrid or all electric configuration or energy management strategy through visual programming and by creating components as hierarchical subsystems which can be used interchangeably as embedded systems. V-Elph is composed of detailed models of four major types of components: electric motors, internal combustion engines, batteries, and vehicle dynamics which can be integrated to simulate drive trains having all electric, series hybrid, and parallel hybrid configurations. V-Elph was written in the Matlab/Simulink graphical simulation language and is portable to most computer platforms. A simulation study of a sustainable, electrically-peaking hybrid-electric vehicle was performed to illustrate the applicability of V-Elph to hybrid and electric vehicle design.
Technical Paper

An Empirically Based Electrosource Horizon Lead-Acid Battery Model

1996-02-01
960448
A empirically based mathematical model of a lead-acid battery for use in the Texas A&M University's Electrically Peaking Hybrid (ELPH) computer simulation is presented. The battery model is intended to overcome intuitive difficulties with currently available models by employing direct relationships between state-of-charge, voltage, and power demand. The model input is the power demand or load. Model outputs include voltage, an instantaneous battery efficiency coefficient and a state-of-charge indicator. A time and current dependent voltage hysteresis is employed to ensure correct voltage tracking inherent with the highly transient nature of a hybrid electric drivetrain.
Technical Paper

Characterization of a Fuel Cell/Battery Hybrid System for Electric Vehicle (EV) Applications

1993-08-01
931818
A fuel cell/battery hybrid system for an electric vehicle was characterized under simulated driving conditions. The fuel cell is a 72 cell stack with 270 cm2 per cell of active electrode area. It has a continuous output of 1500 Watts and a peak power of 3000 Watts operating on hydrogen and atmospheric pressure air. The batteries are a tubular flooded lead-acid type. Seven 6 volt modules were connected in series with each module having a normal capacity of 205 Ahr. The fuel cell battery hybrid system was laboratory tested using a variable load battery cycler to simulate electric vehicle operation over a Modified Simplified Federal Urban Driving Schedule (MSFUDS). The fuel cell/battery hybrid operated successfully under steady state and dynamic conditions with the performance of the fuel cell only slightly degraded under the dynamic conditions of MSFUDS compared to steady state operation.
Technical Paper

Topological Variations of the Inverse Dual Converter for High-Power DC-DC Distribution Systems

1992-08-03
929114
New dc to dc converter topologies are presented which are suitable for high density high power supplies. Topological variations of the basic inverse dual converter (IDC) circuit such as the transformer coupled, the multiphase and the multipulse derivation of the single phase IDC have been analysed and some simulation results have been presented. It has been shown in a recent publication [1] that the single phase IDC offers a buck-boost operation over wide range without transformer, bidirectional power flow, and complementary commutation of the switches. The topologies examined in this paper have additional features such as lower device and component stresses, and smaller filter requirements, resulting in smaller size and weight. Some performance and possible applications are also examined. Finally the IDCs for serial and parallel power distribution, and ac tapping of the IDC are discussed.
Technical Paper

High Impedance Fault Detection Using Artificial Neural Network Techniques

1992-08-03
929103
Artificial Neural Network(ANN) techniques are used to develop a system to detect High Impedance Faults(HIFs) in electric power distribution lines. Encouraging results were observed with a simple Multi-layer Perceptron(MLP) trained with the backpropagation learning algorithm. Although the results are not significantly better than those reported with other algorithmic approaches, ANN techniques have potential advantages over the other approaches; namely, ability to train the system easily to accommodate different feeder characteristics, ability to adapt and so become a better detector with experience and better fault tolerance. When these features are incorporated, the system is expected to perform better than existing systems. The system we developed for the current phase, the training strategies used, the tests conducted and the results obtained are discussed in this paper. Also background discussions on existing HIF detection techniques, and ANN techniques can be found in this paper.
Technical Paper

Fault-Tolerant Adaptive Control for Load-Following in Static Space Nuclear Power Systems

1992-08-03
929453
The possible use of a dual-loop, model-based adaptive control system for load-following in static space nuclear power systems is investigated. The objective of the fault-tolerant, autonomous control system is to deliver the demanded electric power at the desired voltage level, by appropriately manipulating the neutron power through the control drums. As a result sufficient thermal power is produced to meet the required demand in the presence of dynamically changing system operating conditions and potential sensor failures. Even though the proposed approach has thus far been applied only to a thermoelectric space nuclear power system, it is equally applicable to other static space nuclear power systems, such as thermionic systems. This is because of the considerable similarities in the underlying operational issues and in the dynamics of these systems from a control engineering viewpoint.
X