Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

Evaluation of Distinctive Oil Bores in Engine Crankshaft for Friction Reduction Purpose

2023-09-29
2023-32-0160
Internal combustion engines will play an important role in the coming decades, even considering targets of carbon neutrality for a sustainable future. This will be especially true in regions where pure electrified vehicle implementation is not yet practical, or for long-range heavy load transportation purposes, even in regions where BEV infrastructure is well established. HEV/PHEV’s importance and contribution to CO2 emission reduction together with carbon neutral fuels such as hydrogen, e-fuel and biomass fuel etc. will remain crucial regardless of region/transport sectors. In this respect, brake thermal efficiency improvements by friction reduction needs further investigation. This is especially so with the crankshaft bearings’ lubrication system, which can provide as much as 40% of the total mechanical losses in some cases. It is a well-established fact, that plain bearings require a minimum oil flow volume to maintain their real function rather than oil pressure.
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 2: Practical Application to Turbocharger)

2023-04-11
2023-01-0412
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. Though CO2 emission has been reduced through electrification, internal combustion engines equipped in vehicles such as Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV) are still necessary for the foreseeable future, and continuous efforts to improve fuel economy are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been being researched as the next generation of turbocharged gasoline engines. It is known that an increase of the boost pressure causes deposit formation, which decrease the turbocharger efficiency, in the turbocharger compressor housing. To avoid the efficiency loss due to deposit, air temperature at compressor outlet has to be limited low.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Development of Automatic Door Lock System to Help Prevent Collisions between Opened Doors and Approaching Vehicles When Exiting Vehicle

2022-03-29
2022-01-0068
Collisions between opened doors and approaching vehicles such as bicycles are common occurrences in urban areas around the world. For example, in Chicago, 20% of all bicycle accidents involve collisions with doors, which occur over 300 times a year. In addition, there are concerns about a further rise in accidents due to the recent increase in home delivery services and bicycle commuting during the COVID-19 pandemic. Some advanced driver assistance systems (ADAS) that are designed to help prevent this type of accident have already been introduced. These systems detect approaching vehicles with sensors and alert the person opening the door via LED lights or a buzzer when the door is opened. The occupant must understand the meaning of the alert and stop opening the door quickly to prevent an accident. However, if the occupant is an elderly person or a child, it is difficult to stop opening the door quickly.
Technical Paper

Road Crossing Assistance Method Using Object Detection Based on Deep Learning

2022-03-29
2022-01-0149
This paper describes a method for assisting pedestrians to cross a road. As motorization develops, pedestrian protection techniques are becoming more and more important. Advanced driving assistance systems (ADAS) are improving rapidly to provide even greater safety. However, since the accident risk of pedestrians remains high, the development of an advanced walking assistance system for pedestrian protection may be an effective means of reducing pedestrian accidents. Crossing a road is one of the highest risk events, and is a complex phenomenon that consists of many dynamically changing elements such as vehicles, traffic signals, bicycles, and the like. A road crossing assistance system requires three items: real-time situational recognition, a robust decision-making function, and reliable information transmission. Edge devices equipped with autonomous systems are one means of achieving these requirements.
Technical Paper

Development of Safety Performance for FC Stack in the New Toyota FCEV

2022-03-29
2022-01-0686
The new Toyota Mirai hydrogen fuel cell electric vehicle (FCEV) was launched in December 2020. Achieving a low-cost, high-performance FC stack is an important objective in FCEV development. At the same time, it is also necessary to ensure vehicle safety. This paper presents an overview of the safety requirements for onboard FC stacks. It also describes the simulation and evaluation methods for the following matters related to the FC stack. i) Impact force resistance: The FC stack was designed to prevent cell layer slippage due to impact. Constraint force between the cell layers is provided by the frictional force between the cells and an external constraint. A simulation of the behavior of the cell layers under impact force was developed. The impact force resistance was confirmed by an impact loading test. ii) Hydrogen safety: The FC stack was designed so that permeated hydrogen is ventilated and the hydrogen concentration is kept below the standard.
Technical Paper

Development of Aerodynamic Drag Reduction around Rear Wheel

2021-04-06
2021-01-0962
Due to new CO2 regulations and increasing demand for improved fuel economy, reducing aerodynamic drag has become more critical. Aerodynamic drag at the rear of the vehicle accounts for approximately 40% of overall aerodynamic drag due to low base pressure in the wake region. Many studies have focused on the wake region structure and shown that drag reduction modifications such as boattailing the rear end and sharpening the rear edges of the vehicle are effective. Despite optimization using such modifications, recent improvements in the aerodynamic drag coefficient (Cd) seem to have plateaued. One reason for this is the fact that vehicle design is oriented toward style and practicality. Hence, maintaining flexibility of design is crucial to the development of further drag reduction modifications. The purpose of this study was to devise a modification to reduce rear drag without imposing additional design restrictions on the upper body.
Technical Paper

Development of Simplified Finite Element Model for Ultra-High-Strength Steel Resistance Spot Weld Fractures

2020-04-14
2020-01-0220
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
Journal Article

Development of Strength Distributed Hot Stamp Parts

2019-04-02
2019-01-0522
1 Structural parts, such as the center pillar, are a multi-layer structure. They are a combination of high-strength panels and high-toughness panels, to control the deformation mode during a crash. If we can make this multi-layered structure as one panel, consisting of different hardness within it, we will be able to make a lightweight part. In this study, we have developed a method to fabricate a ‘lightweight center pillar’ with the following processes. First, the whole panel is hardened by quenching within the hot stamp process. Next, certain areas of the panel are softened by partial tempering. We have found that the temperature zone for softening is between A1 and A3, and it is easy to perform a rapid and accurate tempering by utilizing induction heating around the Curie temperature between A1 and A3 transformation temperature.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
The quantity of heavy components in fuel is increasing as automotive fuels diversify, and engine oil formulations are becoming more complex. These trends result in the formation of larger amounts of carbon deposits as reaction byproducts during combustion, potentially worsening the susceptibility of the engine to knock [1]. The research described in this paper aimed to identify the mechanism that causes knocking to deteriorate due to carbon deposits in low to medium engine load ranges, which are mainly used when the vehicle drives off and accelerates. With this objective, the cylinder temperature and pressure with and without deposits were measured, and it was found that knocking deteriorates in a certain range of ignition timing.
Technical Paper

Reference PMHS Sled Tests to Assess Submarining of the Small Female

2018-11-12
2018-22-0003
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining.
Technical Paper

Theory of Collision Avoidance Capability in Automated Driving Technologies

2018-04-03
2018-01-0044
This paper proposes a theory to analyze the collision avoidance capability of automated driving technologies. The theory gives answers to a fundamental question whether automated vehicles fall into extreme conditions at all rather than another question how a vehicle reacts under extreme conditions (is it as safe as driver?). The theory clarifies the following matters: There are two types of hazards to cause collisions, cognitive hazards and behavioral hazards. Cognitive hazards are handled by controlling the upper limit speed of the automated vehicle including when stopped. There are two methods for handling behavioral hazards, preparation and response. The response known well is the coping method activated when the hazard is detected in the dynamic (operational) level. The preparation is the coping method operating at all time in the semantic (tactical) level.
Technical Paper

Update of the WorldSID 50th Male Pelvic Injury Criterion and Risk Curve

2018-04-03
2018-01-0539
Petit et al. 2015 and Lebarbé et al. 2016 reported on two studies where the injury mechanism and threshold of the sacroiliac joint were investigated in two slightly oblique crash test conditions from 18 Post Mortem Human Subjects (PMHS) tests. They concluded that the sacroiliac joint fractures were associated with pubic rami fractures. These latter being reported to occur first in the time history. Therefore it was recommended not to define a criterion specific for the sacroiliac joint. In 2012, injury risk curves were published for the WorldSID dummy by Petitjean et al. For the pelvis, dummy and PMHS paired tests from six configurations were used (n = 55). All of these configurations were pure lateral impacts. In addition, the sacroiliac joint and femur neck loads were not recorded, and the dummy used was the first production version (WorldSID revision 1). Since that time, the WorldSID was updated several times, including changes in the pelvis area.
Technical Paper

The Effect of Gasoline Metallic Additives on Low Speed Pre-Ignition

2018-04-03
2018-01-0936
Methylcyclopentadienyl manganese tricarbonyl (MMT) is used as an octane-enhancing metallic additive for unleaded gasoline which can prevent engine knock by proactive reaction with the hydrocarbon free radicals before starting the auto-ignition of hydrocarbons. However it has been pointed out that MMT causes automotive catalysts clogging and spark plug severely fouling. Therefore, many countries have fuel standards that prohibit or limit the usage of MMT. Nevertheless, some countries still use MMT as there are no restrictions imposed by fuel standards. As mentioned in several papers, metallic additives of engine oil such as calcium cause an abnormal combustion phenomenon called low-speed pre-ignition (LSPI) in turbocharged spark ignition engines. In contrast, the effect of metallic additives of gasoline such as MMT on LSPI has not been studied.
Journal Article

Theoretical Study on Spray Design for Small-Bore Diesel Engine (Second Report)

2017-03-28
2017-01-0704
Generally, soot emissions increase in diesel engines with smaller bore sizes due to larger spray impingement on the cavity wall at a constant specific output power. The objective of this study is to clarify the constraints for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes. The first report applied the geometrical similarity concept to two engines with different bore sizes and similar piston cavity shapes. The smaller engine emitted more smoke because air entrainment decreases due to the narrower spray angle. A new spray design method called spray characteristics similarity was proposed to suppress soot emissions. However, a smaller nozzle diameter and a larger number of nozzle holes are required to maintain the same spray characteristics (such as specific air-entrainment and penetration) when the bore size decreases.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Technical Paper

Feasibility Study of Drowsy Driving Prediction based on Eye Opening Time

2017-03-28
2017-01-1398
Since drowsy driving is a major cause of serious traffic accidents, there is a growing requirement for drowsiness prevention technologies. This study proposes a drowsy driving prediction method based on eye opening time. One issue of using eye opening time is predicting strong drowsiness before the driver actually feels sleepy. Because overlooking potential hazards is one of the causes of traffic accidents and is closely related to driver cognition and drowsiness, this study focuses on eye opening movements during driving. First, this report describes hypotheses concerning drowsiness and eye opening time based on the results of previous studies. It is assumed that the standard deviation of eye opening time (SDEOP) indicates driver drowsiness and the following two transitions are considered: increasing and decreasing SDEOP. To confirm the hypotheses, the relationship between drowsiness and SDEOP was investigated.
Technical Paper

Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline

2017-03-28
2017-01-1288
Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
X