Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Component Sizing Optimization Based on Technological Assumptions for Medium-Duty Electric Vehicles

2024-04-09
2024-01-2450
In response to the stipulations of the Energy Policy and Conservation Act and the global momentum toward carbon mitigation, there has been a pronounced tightening of fuel economy standards for manufacturers. This stricter regulation is coupled with an accelerated transition to electric vehicles, catalyzed by advances in electrification technology and a decline in battery cost. Improvements in the fuel economy of medium- and heavy-duty vehicles through electrification are particularly noteworthy. Estimating the magnitude of fuel economy improvements that result from technological advances in these vehicles is key to effective policymaking. In this research, we generated vehicle models based on assumptions regarding advanced transportation component technologies and powertrains to estimate potential vehicle-level fuel savings. We also developed a systematic approach to evaluating a vehicle’s fuel economy by calibrating the size of the components to satisfy performance requirements.
Technical Paper

Energy Storage Requirements and Implementation for a Lunar Base Microgrid

2023-09-05
2023-01-1514
Future lunar missions will utilize a Lunar DC microgrid (LDCMG) to construct the infrastructure for distributing, storing, and utilizing electrical energy. The LDCMG’s energy management, of which energy storage systems (ESS) are crucial components, will be essential to the success of the missions. Standard system design currently employs a rule-of-thumb approach in which design methodologies rely on heuristics that may only evaluate local power balancing requirements. The Hamiltonian surface shaping and power flow control (HSSPFC) method can also be utilized to analyze and design the lunar LDCMG power distribution network and ESS. In this research, the HSSPFC method will be utilized to determine the ideal energy storage requirements for ESS and the optimally distributed control architecture.
Technical Paper

Assessment of Fuel Consumption of a co-Optimized Gasoline Compression Ignition Engine in a Hybrid Electric Vehicle Platform

2023-04-11
2023-01-0467
Increasing regulatory demand to reduce CO2 emissions has led to an industry focus on electrified vehicles while limiting the development of conventional internal combustion engine (ICE) and hybrid powertrains. Hybrid electric vehicle (HEV) powertrains rely on conventional SI mode IC engines that are optimized for a narrow operating range. Advanced combustion strategies such as Gasoline Compression Ignition (GCI) have been demonstrated by several others including the authors to improve brake thermal efficiency compared to both gasoline SI and Diesel CI modes. Soot and NOx emissions are also reduced significantly by using gasoline instead of diesel in GCI engines due to differences in composition, fuel properties, and reactivity. In this work, an HEV system was proposed utilizing a multi-mode GCI based ICE combined with a HEV components (e-motor, battery, and invertor).
Technical Paper

HIL Demonstration of Energy Management Strategy for Real World Extreme Fast Charging Stations with Local Battery Energy Storage Systems

2023-04-11
2023-01-0701
Extreme Fast Charging (XFC) infrastructure is crucial for an increase in electric vehicle (EV) adoption. However, an unmanaged implementation may lead to negative grid impacts and huge power costs. This paper presents an optimal energy management strategy to utilize grid-connected Energy Storage Systems (ESS) integrated with XFC stations to mitigate these grid impacts and peak demand charges. To achieve this goal, an algorithm that controls the charge and discharge of ESS based on an optimal power threshold is developed. The optimal power threshold is determined to carry out maximum peak shaving for given battery size and SOC constraints.
Technical Paper

Deliver Signal Phase and Timing (SPAT) for Energy Optimization of Vehicle Cohort Via Cloud-Computing and LTE Communications

2023-04-11
2023-01-0717
Predictive Signal Phase and Timing (SPAT) message set is one fundamental building block for vehicle-to-infrastructure (V2I) applications such as Eco-Approach and Departure (EAD) at traffic signal controlled urban intersections. Among the two complementary communication methods namely short-range sidelink (PC5) and long-range cellular radio link (Uu), this paper documents the work with long-range link: the complete data chain includes connecting to the traffic signals via existing backhaul communication network, collecting the raw signal phase state data, predicting the signal state changes and delivering the SPAT data via a geofenced service to requests over HTTP protocols. An Application Programming Interface (API) library is developed to support various cellular data transmission reduction and latency improvement techniques.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Journal Article

A Cloud-Based Simulation and Testing Framework for Large-Scale EV Charging Energy Management and Charging Control

2022-03-29
2022-01-0169
The emerging need of building an efficient Electric Vehicle (EV) charging infrastructure requires the investigation of all aspects of Vehicle-Grid Integration (VGI), including the impact of EV charging on the grid, optimal EV charging control at scale, and communication interoperability. This paper presents a cloud-based simulation and testing platform for the development and Hardware-in-the-Loop (HIL) testing of VGI technologies. Although the HIL testing of a single charging station has been widely performed, the HIL testing of spatially distributed EV charging stations and communication interoperability is limited. To fill this gap, the presented platform is developed that consists of multiple subsystems: a real-time power system simulator (OPAL-RT), ISO 15118 EV Charge Scheduler System (EVCSS), and a Smart Energy Plaza (SEP) with various types of charging stations, solar panels, and energy storage systems.
Technical Paper

Design and Implementation of An Oxidation Catalyst for A Spark Ignited Two Stroke Snowmobile Engine

2022-01-09
2022-32-0005
The primary goal of this project was to design and implement an oxidation catalyst specific to a high-performance spark ignited two stroke engines to reduce vehicle-out emissions. The primary challenges of two stroke catalysis at high loads include controlling the catalytic reaction temperature as well as minimizing the increase in exhaust back pressure due to the addition of a catalyst. Reaction temperature is difficult to control due to high HC and CO concentrations paired with an excess of oxygen in the exhaust stream. By limiting catalyst conversion efficiency, the reaction temperatures were controlled. Two stroke engines are also inherently sensitive to changes in exhaust back pressure and therefore location and sizing of the catalyst are key design considerations. Because of these challenges significant effort was directed toward developing the two-stroke specific catalyst design process.
Technical Paper

Numerical Evaluation of Spark Assisted Cold Idle Operation in a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0410
Gasoline compression ignition (GCI) has been shown to offer benefits in the NOx-soot tradeoff over conventional diesel combustion while still achieving high fuel efficiency. However, due to gasoline’s low reactivity, it is challenging for GCI to attain robust ignition and stable combustion under cold operating conditions. Building on previous work to evaluate glow plug-assisted GCI combustion at cold idle, this work evaluates the use of a spark plug to assist combustion. The closed-cycle 3-D CFD model was validated against GCI test results at a compression ratio of 17.3 during extended cold idle operation under laboratory-controlled conditions. A market representative, ethanol-free, gasoline (RON92, E0) was used in both the experiment and the numerical analysis. Spark-assisted simulations were performed by incorporating an ignition model with the spark energy required for stable combustion at cold start.
Technical Paper

Microsimulation-Based Evaluation of an Eco-Approach Strategy for Automated Vehicles Using Vehicle-in-the-Loop

2021-04-06
2021-01-0112
Connected and automated technologies poised to change the way vehicles operate are starting to enter the mainstream market. Methods to accurately evaluate these technologies, in particular for their impact on safety and energy, are complex due to the influence of static and environmental factors, such as road environment and traffic scenarios. Therefore, it is important to develop modeling and testing frameworks that can support the development of complex vehicle functionalities in a realistic environment. Microscopic traffic simulations have been increasingly used to assess the performance of connected and automated vehicle technologies in traffic networks. In this paper, we propose and apply an evaluation method based on a combination of microscopic traffic simulation (AIMSUN) and a chassis dynamometer-based vehicle-in-the-loop environment, developed at Argonne National Laboratory.
Technical Paper

Opportunities for Medium and Heavy Duty Vehicle Fuel Economy Improvements through Hybridization

2021-04-06
2021-01-0717
The objective of this study was to evaluate the fuel saving potential of various hybrid powertrain architectures for medium and heavy duty vehicles. The relative benefit of each powertrain was analyzed, and the observed fuel savings was explained in terms of operational efficiency gains, regenerative braking benefits from powertrain electrification and differences in vehicle curb weight. Vehicles designed for various purposes, namely urban delivery, utility, transit, refuse, drayage, regional and long haul were included in this work. Fuel consumption was measured in regulatory cycles and various real world representative cycles. A diesel-powered conventional powertrain variant was first developed for each case, based on vehicle technical specifications for each type of truck. Autonomie, a simulation tool developed by Argonne National Laboratory, was used for carrying out the vehicle modeling, sizing and fuel economy evaluation.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Journal Article

Multi-Physics and CFD Analysis of an Enclosed Coaxial Carbon Nanotube Speaker for Automotive Exhaust Noise Cancellation

2019-06-05
2019-01-1569
Automotive exhaust noise is one of the major sources of noise pollution and it is controlled by passive control system (mufflers) and active control system (loudspeakers and active control algorithm). Mufflers are heavy, bulky and large in size while loudspeakers have a working temperature limitation. Carbon nanotube (CNT) speakers generate sound due to the thermoacoustic effect. CNT speakers are also lightweight, flexible, have acoustic and light transparency as well as high operating temperature. These properties make them ideal to overcome the limitations of the current exhaust noise control systems. An enclosed, coaxial CNT speaker is designed for exhaust noise cancellation application. The development of a 3D multi-physics (coupling of electrical, thermal and acoustical domains) model, for the coaxial speaker is discussed in this paper. The model is used to simulate the sound pressure level, input power versus ambient temperature and efficiency.
Technical Paper

Analysis and Model Validation of the Toyota Prius Prime

2019-04-02
2019-01-0369
The Toyota Prius Prime is a new generation of Toyota Prius plug-in hybrid electric vehicle, the electric drive range of which is 25 miles. This version is improved from the previous version by the addition of a one-way clutch between the engine and the planetary gear-set, which enables the generator to add electric propulsive force. The vehicle was analyzed, developed and validated based on test data from Argonne National Laboratory’s Advanced Powertrain Research Facility, where chassis dynamometer set temperature can be controlled in a thermal chamber. First, we analyzed and developed components such as engine, battery, motors, wheels and chassis, including thermal aspects based on test data. By developing models considering thermal aspects, it is possible to simulate the vehicle driving not only in normal temperatures but also in hot, cold, or warmed-up conditions.
Technical Paper

Mixing-Limited Combustion of Alcohol Fuels in a Diesel Engine

2019-04-02
2019-01-0552
Diesel-fueled, heavy-duty engines are critical to global economies, but unfortunately they are currently coupled to the rising price and challenging emissions of Diesel fuel. Public awareness and increasingly stringent emissions standards have made Diesel OEMs consider possible alternatives to Diesel, including electrification, fuel cells, and spark ignition. While these technologies will likely find success in certain market segments, there are still many applications that will continue to require the performance and liquid-fueled simplicity of Diesel-style engines. Three-way catalysis represents a possible low-cost and highly-effective pathway to reducing Diesel emissions, but that aftertreatment system has typically been incompatible with Diesel operation due to the prohibitively high levels of soot formation at the required stoichiometric fuel-air ratios. This paper explores a possible method of integrating three-way catalysis with Diesel-style engine operation.
Technical Paper

Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing

2018-04-03
2018-01-0300
The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location is a vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors are crucial to this task as the spray produces larger droplets during both theses phases.
Technical Paper

Effect of State of Charge Constraints on Fuel Economy and Battery Aging when Using the Equivalent Consumption Minimization Strategy

2018-04-03
2018-01-1002
Battery State of Charge (SOC) constraints are used to prevent the battery in Hybrid Electric Vehicles (HEVs) from over-charging or over-discharging. These constraints strongly influence the power-split of the HEV. This paper presents results on how Battery State of Charge (SOC) constraints effects Lithium ion battery aging and fuel economy when using the Equivalent Consumption Minimization Strategy (ECMS). The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’ ANR26650 battery cell. Vehicle simulation uses multiple combinations of highway and city drive cycles. For each combination of drive cycles, nine SOC constraints ranges are used. Battery aging is evaluated using a semi-empirical model combined with the accumulated Ah-throughput method which uses, as an input, the battery SOC trajectory from the vehicle simulations. The simulation results provide insight into how SOC constraints effect fuel economy as well as battery aging.
X