Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of a 5-Component Diesel Surrogate Chemical Kinetic Mechanism Coupled with a Semi-Detailed Soot Model with Application to Engine Combustion and Emissions Modeling

2023-08-28
2023-24-0030
In the present work, five surrogate components (n-Hexadecane, n-Tetradecane, Heptamethylnonane, Decalin, 1-Methylnaphthalene) are proposed to represent liquid phase of diesel fuel, and another different five surrogate components (n-Decane, n-Heptane, iso-Octane, MCH (methylcyclohexane), Toluene) are proposed to represent vapor phase of diesel fuel. For the vapor phase, a 5-component surrogate chemical kinetic mechanism has been developed and validated. In the mechanism, a recently updated H2/O2/CO/C1 detailed sub-mechanism is adopted for accurately predicting the laminar flame speeds over a wide range of operating conditions, also a recently updated C2-C3 detailed sub-mechanism is used due to its potential benefit on accurate flame propagation simulation. For each of the five diesel vapor surrogate components, a skeletal sub-mechanism, which determines the simulation of ignition delay times, is constructed for species C4-Cn.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

On the Utility of Ammonia Sensors for Diesel Emissions Control

2022-03-29
2022-01-0549
This paper analyzes the use of an ammonia sensor for feedback control in diesel exhaust systems. We build our case around the specific example of the heavy duty transient cycle, and an exhaust system with an SCR catalyst, a single urea injector and an upstream and downstream NOx sensor. A key component in our analysis is the inclusion of the tolerance of the ammonia sensor. We show that with the current understanding of the sensor tolerance, the ammonia sensor has limited benefit for controls.
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

Recent Advances in Swelling Resistance of Graphene-Based Rubber Compounds

2020-04-14
2020-01-0769
Recently, graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. This review will focus on the latest studies and recent progress in the swelling resistance of rubber compounds due to the addition of graphene and its derivatives. This work will present the state-of-the-art in this subject area and will highlight the advantages and current limitations of the use of graphene for potential future researches.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

Duct Shape Optimization Using Multi-Objective and Geometrically Constrained Adjoint Solver

2019-04-02
2019-01-0823
In the recent years, adjoint optimization has gained popularity in the automotive industry with its growing applications. Since its inclusion in the mainstream commercial CFD solvers and its continuously added capabilities over the years, its productive usage became readily available to many engineers who were previously limited to interfacing the customized adjoint source code with CFD solvers. The purpose of this work is to demonstrate using an adjoint solver a method to optimize duct shape that meets multiple design objectives simultaneously. To overcome one of the biggest challenges in the duct design, i.e. the severe packaging constraints, the method here uses geometrically constrained adjoint to ensure that the optimum shape always fits into the user-defined packaging space. In this work, adjoint solver and surface sensitivity calculations are used to develop the optimization method.
Journal Article

Passive Hydrocarbon Trap to Enable SULEV-30 Tailpipe Emissions from a Flex-Fuel Vehicle on E85 Fuel

2018-04-03
2018-01-0944
Future LEV-III tailpipe (TP) emission regulations pose an enormous challenge forcing the fleet average of light-duty vehicles produced in the 2025 model year to perform at the super ultralow emission vehicle (SULEV-30) certification levels (versus less than 20% produced today). To achieve SULEV-30, regulated TP emissions of non-methane organic gas (NMOG) hydrocarbons (HCs) and oxygenates plus oxides of nitrogen (NOx) must be below a combined 30 mg/mi (18.6 mg/km) standard as measured on the federal emissions certification cycle (FTP-75). However, when flex-fuel vehicles use E85 fuel instead of gasoline, NMOG emissions at cold start are nearly doubled, before the catalytic converter is active. Passive HC traps (HCTs) are a potential solution to reduce TP NMOG emissions. The conventional HCT design was modified by changing the zeolite chemistry so as to improve HC retention coupled with more efficient combustion during the desorption phase.
Journal Article

Benefits of Pd Doped Zeolites for Cold Start HC/NOx Emission Reductions for Gasoline and E85 Fueled Vehicles

2018-04-03
2018-01-0948
In the development of HC traps (HCT) for reducing vehicle cold start hydrocarbon (HC)/nitrogen oxide (NOx) emissions, zeolite-based adsorbent materials were studied as key components for the capture and release of the main gasoline-type HC/NOx species in the vehicle exhaust gas. Typical zeolite materials capture and release certain HC and NOx species at low temperatures (<200°C), which is lower than the light-off temperature of a typical three-way catalyst (TWC) (≥250°C). Therefore, a zeolite alone is not effective in enhancing cold start HC/NOx emission control. We have found that a small amount of Pd (<0.5 wt%) dispersed in the zeolite (i.e., BEA) can significantly increase the conversion efficiency of certain HC/NOx species by increasing their release temperature. Pd was also found to modify the adsorption process from pure physisorption to chemisorption and may have played a role in the transformation of the adsorbed HCs to higher molecular weight species.
Journal Article

A New Catalyzed HC Trap Technology that Enhances the Conversion of Gasoline Fuel Cold-Start Emissions

2018-04-03
2018-01-0938
Passive in-line catalyzed hydrocarbon (HC) traps have been used by some manufacturers in the automotive industry to reduce regulated tailpipe (TP) emissions of non-methane organic gas (NMOG) during engine cold-start conditions. However, most NMOG molecules produced during gasoline combustion are only weakly adsorbed via physisorption onto the zeolites typically used in a HC trap. As a consequence, NMOG desorption occurs at low temperatures resulting in the use of very high platinum group metal (PGM) loadings in an effort to combust NMOG before it escapes from a HC trap. In the current study, a 2.0 L direct-injection (DI) Ford Focus running on gasoline fuel was evaluated with full useful life aftertreatment where the underbody converter was either a three-way catalyst (TWC) or a HC trap. A new HC trap technology developed by Ford and Umicore demonstrated reduced TP NMOG emissions of 50% over the TWC-only system without any increase in oxides of oxygen (NOx) emissions.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
Technical Paper

The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future: Part II

2018-04-03
2018-01-0939
It is anticipated that future gasoline engines will have improved mechanical efficiency and consequently lower exhaust temperatures at low load conditions, although the exhaust temperatures at high load conditions are expected to remain the same or even increase due to the increasing use of downsized turbocharged engines. In 2014, a collaborative project was initiated at Ford Motor Company, Oak Ridge National Lab, and the University of Michigan to develop three-way catalysts with improved performance at low temperatures while maintaining the durability of current TWCs. This project is funded by the U.S. Department of Energy and is intended to show progress toward the USDRIVE target of 90% conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) at 150 °C after high mileage aging. The testing protocols specified by the USDRIVE ACEC team for stoichiometric S-GDI engines were utilized during the evaluation of experimental catalysts at all three facilities.
Technical Paper

A Review of Modal Choice Models: Case Study for São Paulo

2017-11-07
2017-36-0279
The world urbanization is growing rapidly, bringing many challenges for people to move in dense metropolitan regions. Public transportation is not able to attend the whole demand, and individual transportation modes are struggling with traffic congestion and stringent regulations to reduce its attractiveness, such as the license plate restriction in São Paulo. On the other hand, enablers like smartphones mass penetration, GPS connected services and shared economy have opened space to a whole new range of possible solutions to improve people perception on urban mobility. This work aims to evaluate the modal choice behavior models and understand the success factor of current mobility solutions in the city of São Paulo. The data available through origin/destination researches will be used to validate the models used in this work.
Technical Paper

Brake System Regulations and Standards Review and Comparison Focused on Europe, NA and SA Markets

2017-09-17
2017-01-2534
Considering that the most part of commercial vehicles are equipped with air brakes it is very important assure specific technical requirements for air brake system and its components. In addition, the effects of brake system failure are more critical for commercial vehicles which require more attention on their requirements details. Historically, the development of air brakes technology started on North America and Europe and consequently two strong and distinct resolutions were structured: FMVSS 121 and ECE R.13, respectively. For passenger cars were developed the ECER.13H to harmonize North American and European resolutions. However, for commercial vehicles regional applications, culture and implementation time must be considered. These commercial vehicles peculiarities must be understood and their specific requirements harmonized to attend the global marketing growth.
Journal Article

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine

2017-08-18
2017-01-9378
The design of modern diesel-powered vehicles involves optimization and balancing of trade-offs for fuel efficiency, emissions, and noise. To meet increasingly stringent emission regulations, diesel powertrains employ aftertreatment devices to control nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter emissions and use active exhaust warm-up strategies to ensure those devices are active as quickly as possible. A typical strategy for exhaust warm-up is to operate with retarded combustion phasing, limited by combustion stability and HC emissions. The amount of exhaust enthalpy available for catalyst light-off is limited by the extent to which combustion phasing can be retarded. Diesel cetane number (CN), a measure of fuel ignition quality, has an influence on combustion stability at retarded combustion phasing. Diesel fuel in the United States tends to have a lower CN (both minimum required and average in market) than other countries.
X