Refine Your Search

Topic

Author

Search Results

Technical Paper

NOx Measurement and Characterization in a Gaseous Fueled High-Pressure Direct-Injection Engine

2023-10-31
2023-01-1628
Heavy-duty (HD) vehicles are a crucial part of the transportation sector; however, strict governmental regulations will require future HD vehicles to meet even more rigid NOx emission standards than what already exist. The use of natural gas (NG) as the primary fuel in HD vehicles can immediately reduce the NOx emissions through lower flame temperatures as compared to traditional diesel and can serve as a precursor to even less carbon intensive fuels as they become more readily available. Pilot ignited direct injection natural gas (PIDING) engine technology is one example of how NG can be used in HD vehicles while maintaining diesel-like efficiency. However, NOx emissions still need to be mitigated to avoid negative air quality effects. Exhaust gas recirculation (EGR) is known to reduce in-cylinder temperatures and thus reduce in-cylinder NOx emissions in diesel engines, but the effects of EGR are not as well understood in PIDING engines.
Technical Paper

Comparing Real Driving Emissions from Euro 6d-TEMP Vehicles Running on E0 and E10 Gasoline Blends

2023-10-31
2023-01-1662
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS).
Technical Paper

On-Road CO2 and NOx Emissions for a Heavy-Duty Truck with Hydrogen-Diesel Co-Combustion

2023-04-11
2023-01-0281
Heavy-duty diesel trucking is responsible for 25%-30% of the road transportation CO2 emissions in North America. Retrofitting class-8 trucks with a complementary hydrogen fuelling system makes it possible to co-combust hydrogen and diesel in the existing internal combustion engine (ICE), thus minimizing the costs associated with switching to non-ICE platforms and reducing the barrier for the implementation of low-carbon gaseous fuels such as hydrogen. This retrofitting approach is evaluated based on the exhaust emissions of a converted truck with several thousand kilometres of road data. The heavy-duty truck used here was retrofitted with an air-intake hydrogen injection system, onboard hydrogen storage tanks, and a proprietary hydrogen controller enabling it to operate in hydrogen-diesel co-combustion (HDC) mode.
Journal Article

Isolated Low Temperature Heat Release in Spark Ignition Engines

2023-04-11
2023-01-0235
Low temperature heat release (LTHR) has been of interest to researchers for its potential to mitigate knock in spark ignition (SI) engines and control auto-ignition in advanced compression ignition (ACI) engines. Previous studies have identified and investigated LTHR in both ACI and SI engines before the main high temperature heat release (HTHR) event by appropriately curating the in-cylinder thermal state during compression, or in the case of SI engines, timing the spark discharge late to reveal LTHR (sometimes referred to as pre-spark heat release). In this work, LTHR is demonstrated in isolation from HTHR events. Tests were run on motored single-cylinder engines and inlet air temperatures and pressures were adjusted to realise LTHR from n-heptane and iso-octane (2,2,4-trimethylpentane) without entering the HTHR regime. LTHR was observed for a lean n-heptane-air mixture at inlet temperatures ranging from 60°C to 100°C and inlet pressures of 0.9 bar (absolute).
Technical Paper

Refinement of Gaussian Process Regression Modeling of Pilot-Ignited Direct-Injected Natural Gas Engines

2022-09-23
2022-01-5075
This paper presents a sensitivity-based input selection algorithm and a layered modeling approach for improving Gaussian Process Regression (GPR) modeling with hyperparameter optimization for engine model development with data sets of 120 training points or less. The models presented here are developed for a Pilot-Ignited Direct-Injected Natural Gas (PIDING) engine. A previously developed GPR modeling method with hyperparameter optimization produced some models with normalized root mean square error (nRMSE) over 0.2. The input selection method reduced the overall error by 0.6% to 18.85% while the layered modeling method improved the error for carbon monoxide (CO) by 52.6%, particulate matter (PM) by 32.5%, and nitrogen oxides (NOX) by 29.8%. These results demonstrate the importance of selecting only the most relevant inputs for machine learning models.
Technical Paper

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

2021-09-05
2021-24-0076
Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
Technical Paper

A Machine Learning Modeling Approach for High Pressure Direct Injection Dual Fuel Compressed Natural Gas Engines

2020-09-15
2020-01-2017
The emissions and efficiency of modern internal combustion engines need to be improved to reduce their environmental impact. Many strategies to address this (e.g., alternative fuels, exhaust gas aftertreatment, novel injection systems, etc.) require engine calibrations to be modified, involving extensive experimental data collection. A new approach to modeling and data collection is proposed to expedite the development of these new technologies and to reduce their upfront cost. This work evaluates a Gaussian Process Regression, Artificial Neural Network and Bayesian Optimization based strategy for the efficient development of machine learning models, intended for engine optimization and calibration. The objective of this method is to minimize the size of the required experimental data set and reduce the associated data collection cost for engine modeling.
Technical Paper

The Effect of an Active Thermal Coating on Efficiency and Emissions from a High Speed Direct Injection Diesel Engine

2020-04-14
2020-01-0807
This study looked into the application of active thermal coatings on the surfaces of the combustion chamber as a method of improving the thermal efficiency of internal combustion engines. The active thermal coating was applied to a production aluminium piston and its performance was compared against a reference aluminium piston on a single-cylinder diesel engine. The two pistons were tested over a wide range of speed/load conditions and the effects of EGR and combustion phasing on engine performance and tailpipe emissions were also investigated. A detailed energy balance approach was employed to study the thermal behaviour of the active thermal coating. In general, improvements in indicated specific fuel consumption were not statistically significant for the coated piston over the whole test matrix. Mean exhaust temperature showed a marginal increase with the coated piston of up to 6 °C.
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Technical Paper

A Three-Layer Thermodynamic Model for Ice Crystal Accretion on Warm Surfaces: EMM-C

2019-06-10
2019-01-1963
Ingestion of high altitude atmospheric ice particles can be hazardous to gas turbine engines in flight. Ice accretion may occur in the core compression system, leading to blockage of the core gas path, blade damage and/or flameout. Numerous engine powerloss events since 1990 have been attributed to this mechanism. An expansion in engine certification requirements to incorporate ice crystal conditions has spurred efforts to develop analytical models for phenomenon, as a method of demonstrating safe operation. A necessary component of a complete analytical icing model is a thermodynamic accretion model. Continuity and energy balances are performed using the local flow conditions and the mass fluxes of ice and water that are incident on a surface to predict the accretion growth rate.
Technical Paper

Experimental Study and Analysis of Ice Crystal Accretion on a Gas Turbine Compressor Stator Vane

2019-06-10
2019-01-1927
A significant number of historical engine powerloss events have recently been attributed to ingestion of high altitude ice crystals, prompting regulators to expand engine certification envelopes to incorporate ‘ice crystal icing’ conditions. There has been a resulting effort by OEMs and academia to develop analytical and semi-empirical models for the phenomenon, partly through use of rig testing. The current study presents results and analysis of experiments conducted in the National Research Council’s Research Altitude Test Facility (RATFac). The experiments used a simplified compressor stator vane test article, designed to produce data to build semi-empirical models and validate an existing ice crystal icing code. Accretion growth rates, extracted from backlit shadowgraphy, are presented as a function of test condition, and the algorithm of a new image processing technique using Canny filtering is discussed.
Technical Paper

Two-Way Flow Coupling in Ice Crystal Icing Simulation

2019-06-10
2019-01-1966
Numerous turbofan power-loss events have occurred in high altitude locations in the presence of ice crystals. It is theorized that ice crystals enter the engine core, partially melt in the compressor and then accrete onto stator blade surfaces. This may lead to engine rollback, or shed induced blade damage, surge and/or flameout. The first generation of ice crystal icing predictive models use a single flow field where there is no accretion to calculate particle trajectories and accretion growth rates. Recent work completed at the University of Oxford has created an algorithm to automatically detect the edge of accretion from experimental video data. Using these accretion profiles, numerical simulations were carried out at discrete points in time using a manual meshing process.
Technical Paper

ICICLE: A Model for Glaciated & Mixed Phase Icing for Application to Aircraft Engines

2019-06-10
2019-01-1969
High altitude ice crystals can pose a threat to aircraft engine compression and combustion systems. Cases of engine damage, surge and rollback have been recorded in recent years, believed due to ice crystals partially melting and accreting on static surfaces (stators, endwalls and ducting). The increased awareness and understanding of this phenomenon has resulted in the extension of icing certification requirements to include glaciated and mixed phase conditions. Developing semi-empirical models is a cost effective way of enabling certification, and providing simple design rules for next generation engines. A comprehensive ice crystal icing model is presented in this paper, the Ice Crystal Icing ComputationaL Environment (ICICLE). It is modular in design, comprising a baseline code consisting of an axisymmetric or 2D planar flowfield solution, Lagrangian particle tracking, air-particle heat transfer and phase change, and surface interactions (bouncing, fragmentation, sticking).
Technical Paper

A Study on Kinetic Mechanisms of Diesel Fuel Surrogate n-Dodecane for the Simulation of Combustion Recession

2019-04-02
2019-01-0202
Combustion recession, an end of injection (EOI) diesel spray phenomenon, has been found to be a robust correlation parameter for UHC in diesel LTC strategies. Previous studies have shown that the likelihood of capturing combustion recession in numerical simulations is highly dependent on the details of the low-temperature chemistry reaction mechanisms employed. This study aims to further the understanding of the effects of different chemical mechanisms in the prediction of a reactive diesel spray and its EOI process: combustion recession. Studies were performed under the Engine Combustion Network’s (ECN) “Spray A” conditions using the Reynolds-Averaged Navier-Stokes simulation (RANS) and the Flamelet Generated Manifold (FGM) combustion model with four different chemical mechanisms for n-dodecane that are commonly used in the engine simulation communities - including recently developed reduced chemistry mechanisms.
Technical Paper

Thermal Analysis of Steel and Aluminium Pistons for an HSDI Diesel Engine

2019-04-02
2019-01-0546
Chromium-molybdenum alloy steel pistons, which have been used in commercial vehicle applications for some time, have more recently been proposed as a means of improving thermal efficiency in light-duty applications. This work reports a comparison of the effects of geometrically similar aluminium and steel pistons on the combustion characteristics and energy flows on a single cylinder high-speed direct injection diesel research engine tested at two speed / load conditions (1500 rpm / 6.9 bar nIMEP and 2000 rpm/25.8 bar nIMEP) both with and without EGR. The results indicate that changing to an alloy steel piston can provide a significant benefit in brake thermal efficiency at part-load and a reduced (but non-negligible) benefit at the high-load condition and also a reduction in fuel consumption. These benefits were attributed primarily to a reduction in friction losses.
Technical Paper

Novel Metrics for Validation of PIV and CFD in IC Engines

2019-04-02
2019-01-0716
In-cylinder flow motion has a significant effect on mixture preparation and combustion. Therefore, it is vital that CFD engine simulations are capable of accurately predicting the in-cylinder velocity fields. High-speed planar Particle Image Velocimetry (PIV) experiments have been performed on a single-cylinder GDI optical engine in order to validate CFD simulations for a range of engine conditions. Novel metrics have been developed to quantify the differences between experimental and simulated velocity fields in both alignment and magnitude. The Weighted Relevance Index (WRI) is a variation of the standard Relevance Index that accounts for the local velocity magnitudes to provide a robust comparison of the alignment between two vector fields. Similarly, the Weighted Magnitude Index (WMI) quantifies the differences in the local magnitudes of the two velocity fields.
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Fast NGC: A New On-Line Technique for Fuel Flow Measurement

2019-01-15
2019-01-0062
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modelling. Currently direct measurements of fuel flow to individual cylinders of an engine are not possible on-engine or in real-time due to a lack of available appropriate measurement techniques. The objective of this work was to undertake real-time Coriolis fuel flow measurement using GDI injectors on a rig observing fuel mass flow rate within individual fuel injections. This paper evaluates the potential of this technology - combining Coriolis Flow Meters (CFMs) with Prism signal processing together known as Fast Next Generation Coriolis (Fast NGC), and serves as a basis for future transitions on-engine applications. A rig-based feasibility study has been undertaken injecting gasoline through a GDI injector at 150 bar in both single shot mode and at a simulated engine speeds of 1788 and 2978 rpm. The results show that these injections can, in principle, be observed.
X