Refine Your Search

Topic

Author

Search Results

Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

2019-04-02
2019-01-0543
The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Technical Paper

Optical Investigation of the Impact of Pilot Ratio Variations on Natural Gas Diesel Dual-Fuel Combustion

2019-04-02
2019-01-1159
Experiments were performed on a small-bore optically accessible engine to investigate diesel pilot ignition (DPI) and reactivity controlled compression ignition (RCCI) dual-fuel combustion strategies with direct injection of natural gas and diesel. Parametric variations of pilot ratio were performed. Natural luminosity and OH chemiluminescence movies of the combustion processes were captured at 28.8 and 14.4 kHz, respectively. These data were used to create ignition maps, which aided in comparing the propagation modes of the two combustion strategies. Lower pilot ratios resulted in lower initial heat release rates, and the initial ignition sites were generally smaller and less luminous; for increased pilot ratios the initial portion of the heat release was larger, and the ignition sites were large and bright. Comparisons between diesel pilot ignition and reactivity controlled compression ignition showed differences in combustion propagation mechanisms.
Journal Article

Physically Motivated Model for Efficient Dynamic Simulation of Chain Tensioners with Labyrinth Seals

2017-03-28
2017-01-1073
The object of this study is a new chain tensioner with two labyrinth seals. For the simulation of chain tensioners within the framework of multi-body dynamics, a physically orientated model to describe the fluid dynamics of the labyrinth seals is derived. The easiest way to describe labyrinth seals is to use maps obtained from measurements. As this is very time-consuming, methods of 1D and 2D fluid-mechanics are used in this work to model the labyrinth seals. The seals are characterized by physically motivated parameters e.g. coefficients of resistance or friction. As these parameters can be derived from geometric data, a very good forecast feasibility without experimental investigations is provided. For high accuracy simulations model parameters can be refined by experimental data. As many and highly complex parameters have to be identified, this refinement is very time-consuming and requires lots of experiments.
Journal Article

Development of a High Turbulence, Low Particle Number, High Injection Pressure Gasoline Direct Injection Combustion System

2016-11-16
2016-01-9046
In the present work the benefit of a 50 MPa gasoline direct injection system (GDI) in terms of particle number (PN) emissions as well as fuel consumption is shown on a 0.5 l single cylinder research engine in different engine operating conditions. The investigations show a strong effect of injection timing on combustion duration. As fast combustion can be helpful to reduce fuel consumption, this effect should be investigated more in detail. Subsequent analysis with the method of particle image velocimetry (PIV) at the optical configuration of this engine and three dimensional (3D) computational fluid dynamics (CFD) calculations reveal the influence of injection timing on large scale charge motion (tumble) and the level of turbulent kinetic energy. Especially with delayed injection timing, high combustion velocities can be achieved. At current series injection pressures, the particle number emissions increase at late injection timing.
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Technical Paper

Implementing Mixed Criticality Software Integration on Multicore - A Cost Model and the Lessons Learned

2015-04-14
2015-01-0266
The German funded project ARAMiS included work on several demonstrators one of which was a multicore approach on large scale software integration (LSSI) for the automotive domain. Here BMW and Audi intentionally implemented two different integration platforms to gain both experience and real life data on a Hypervisor based concept on one side as well as using only native AUTOSAR-based methods on the other side for later comparison. The idea was to obtain figures on the added overhead both for multicore as well as safety, based on practical work and close-to-production implementations. During implementation and evaluation on one hand there were a lot of valuable lessons learned about multicore in conjunction with safety. On the other hand valuable information was gathered to make it finally possible to set up a cost model for estimation of potential overhead generated by different integration approaches for safety related software functions.
Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Technical Paper

Using Non-Smooth Mechanics and Parallelization Techniques for the Efficient Simulation of Different Types of Valve Springs

2013-04-08
2013-01-1119
In this paper, a spring model based on a curved beam is used for the simulation of cylindrical, conical and beehive valve springs. The internal dynamic are described by hyperbolic partial differential equations which are discretized by the finite element method. The contacts between adjacent windings are included using the Augmented Lagrangian method and non-smooth contact mechanics. For smooth contact modeling, spring and damper elements are used to minimize penetration of the bodies coming into contact. Rigid or non-smooth contact forces are subject to set-valued force laws describing the condition of non-penetration. Both contact models are compared. The derived spring models for all three types of winding shapes are validated in the frequency and time domain with experimental data. In the second part, a multi-body simulation model of an entire valve train including the derived spring model is presented.
Technical Paper

Model-Predictive Energy Management for the Integration of Plug-In-Hybrid Electric Vehicles into Building Energy Systems

2013-04-08
2013-01-1443
In current research projects such as "Vehicle to Grid" (V2G), "Vehicle to Building" (V2B) or "Vehicle to Home" (V2H), plug-in vehicles are integrated into stationary energy systems. V2B or V2H therefore stands for intelligent networking between vehicles and buildings. However, in these projects the objective is mostly from a pure electric point of view, to smooth the load profile on a household level by optimized charging and discharging of electric vehicles. In the present paper a small energy system of this kind, consisting of a building and a vehicle, is investigated from a holistic point of view. Thermal as well as electrical system components are taken into account and there is a focus on reduction of overall energy consumption and CO₂ emissions. A predictive energy management is presented that coordinates the integration of a plug-in hybrid electric vehicle into the energy systems of a building. System operation is optimized in terms of energy consumption and CO₂ emissions.
Journal Article

Tackling the Complexity of Timing-Relevant Deployment Decisions in Multicore-Based Embedded Automotive Software Systems

2013-04-08
2013-01-1224
Multicore-based ECUs are increasingly used in embedded automotive software systems to allow more demanding automotive applications at moderate cost and energy consumption. Using a high number of parallel processors together with a high number of executed software components results in a practically unmanageable number of deployment alternatives to choose from. However correct deployment is one important step for reaching timing goals and acceptable latency, both also a must to reach safety goals of safety-relevant automotive applications. In this paper we focus at reducing the complexity of deployment decisions during the phases of allocation and scheduling. We tackle this complexity of deployment decisions by a mixed constructive and analytic approach.
Journal Article

Study on the Capability of an Open Source CFD Software for Unsteady Vehicle Aerodynamics

2012-04-16
2012-01-0585
A wind-tunnel experiment investigating unsteady flow phenomena around a generic notchback during single crosswind gusts is modeled with the open source CFD package OpenFOAM®. The overall objective is to assess the capability and accuracy achieved by the simulation tool with respect to its potential for industrial usage. Transient yaw simulations apply a sliding interface between two computational grids, which are generated using the commercial software Spider®. It is shown that a stable simulation process is feasible but requires long computation times. The physical accuracy of the investigated phenomena depends on the computational grid and on the turbulence model used. Although the obtained aerodynamic loads qualitatively correspond with the experimental results, the absolute values are not satisfactory when working with a coarse grid with 6.2 million cells. Then, characteristic surface pressure distributions and their transient development differ from the experimental data.
Journal Article

Dynamic Engine Control for HCCI Combustion

2012-04-16
2012-01-1133
One of the factors preventing widespread use of Homogeneous Charge Compression Ignition or HCCI is the challenge of controlling the process under transient conditions. Current engine control technology does not have the ability to accurately control the individual cylinder states needed for consistent HCCI combustion. The material presented here is a new approach to engine control using a physics-based individual cylinder real time model to calculate the engine states and then controlling the engine with this state information. The model parameters and engine state information calculated within the engine controller can be used to calculate the required actuator positions so that the desired mass of air, fuel, and residual exhaust gas are achieved for each cylinder event. This approach offers a solution to the transient control problem that works with existing sensors and actuators.
Journal Article

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

2012-04-16
2012-01-0380
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that produces low NO and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom-machined pistons designed for RCCI operation.
Journal Article

Estimation of Surface Heat Flux in IC Engines Using Temperature Measurements: Processing Code Effects

2012-04-16
2012-01-1208
Heat transfer in internal combustion engines is taking on greater importance as manufacturers strive to increase efficiency while keeping pollutant emissions low and maintaining adequate performance. Wall heat transfer is experimentally evaluated using temperature measurements both on and below the surface using a physical model of conduction in the wall. Three classes of model inversion are used to recover heat flux from surface temperature measurements: analytical methods, numerical methods and inverse heat conduction methods; the latter method has not been previously applied to engine data. This paper details the inherent assumptions behind, required steps for implementation of, and merits and weaknesses of these heat flux calculation methods. The analytical methods, which have been most commonly employed for engine data, are shown to suffer from sensitivity to measurement noise that requires a priori signal filtering.
Technical Paper

Combining Regenerative Braking and Anti-Lock Braking for Enhanced Braking Performance and Efficiency

2012-04-16
2012-01-0234
The anti-lock braking system (ABS) is a widespread driver assistance system which allows a short braking distance while simultaneously maintaining the stability and steerability of the car. Vehicles with electric single-wheel drive offer many possibilities of improving the energy efficiency and the braking performance during ABS braking. In this paper, two different ways of including the electric machines in the ABS are analyzed in detail: the damping of torsional drive train vibrations in combination with recuperation and the dynamic split of the braking torque, where the hydraulic braking torque is kept constant and the dynamic modulation of the braking torque is performed by the electric machines. The damping algorithm is developed on the basis of a linearized model of the drive train and the tire-road contact by using state feedback and pole placement methods. Simulation results with a detailed multi-body system show the effectiveness of the control algorithms.
Technical Paper

Spatial Dynamics of Pushbelt CVTs: Model Enhancements

2012-04-16
2012-01-0307
Apart from performance, comfort, cost and fun to drive, the reduction of fuel consumption has become a primary driver in the world market of the automotive industry. As continuously variable transmissions based on the pushbelt principle can be operated in an optimal state at any time, they are very suitable to meet the mentioned requirements. However, the power transmission in the system is very complicated. Both detailed measurements and simulations are necessary to understand and to optimize the physical mechanisms, power density and shift characteristics. The current paper presents a spatial simulation model for transient analysis at different levels of detail. An initial model based on non-smooth multi-body theory is outlined. It consists of two rigid pulleys each with one tilting loose sheave. The pushbelt comprises two ring packages based on the co-rotational approach.
Technical Paper

An Efficient Multi-Body Approach Modeling Elastohydrodynamic Friction in Drive Systems

2012-04-16
2012-01-0917
Chain drives are used in powertrains for the kinematic coupling of the cam shaft, the ancillary units and the balancing shafts with the crank shaft. Advantages of chain drives are their high load carrying capacity along with increased durability whilst simultaneously being maintenance-free. A crucial issue in the drive is the optimization in regard of friction, further improving efficiency, reducing exhaust emission and abrasive wear. Modeling friction in drive systems requires precise description of the whole system dynamics. High-frequency oscillations occurring in the chain strands cause numerical problems in the friction computation. As a remedy, regularized friction curves are often used, being however not able to correctly determine all friction configurations and requiring a tradeoff between accuracy and computational efficiency.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part 1

2011-04-12
2011-01-0177
Unsteady aerodynamic flow phenomena are investigated in the wind tunnel by oscillating a realistic 50% scale model around its vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi-steady loads. In particular, the unsteady yaw moment exceeds the quasi-steady approximation by 80%. On the other hand, side force and roll moment are over predicted by quasi-steady approximation but exhibit a significant time delay. Using hotwire anemometry, a delayed reaction of the wake flow of Δt/T = 0.15 is observed, which is thought to be the principal cause for the differences between unsteady and quasi-steady aerodynamic loads. A schematic mechanism explaining these differences due to the delayed reaction of the wake flow is proposed.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part2

2011-04-12
2011-01-0164
Unsteady aerodynamic flow phenomena are investigated in a wind tunnel by oscillating a realistic 50% scale model around the vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi steady loads. In particular, the unsteady yaw moment exceeds the quasi steady approximation significantly. On the other hand, side force and roll moment are over predicted by quasi steady approximation but exhibit a significant time delay. Part 2 of this study proves that a delayed and enhanced response of the surface pressures at the rear side of the vehicle is responsible for the differences between unsteady and quasi steady loads. The pressure changes at the vehicle front, however, are shown to have similar amplitudes and almost no phase shift compared to quasi steady flow conditions.
X