Refine Your Search

Topic

Author

Search Results

Technical Paper

Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition

2024-04-09
2024-01-1980
The SAE AutoDrive Challenge II is a four-year collegiate competition dedicated to developing a Level 4 autonomous vehicle by 2025. In January 2023, the participating teams each received a Chevy Bolt EUV. Within a span of five months, the second phase of the competition took place in Ann Arbor, MI. The authors of this contribution, who participated in this event as team Wisconsin Autonomous representing the University of Wisconsin–Madison, secured second place in static events and third place in dynamic events. This has been accomplished by reducing reliance on the actual vehicle platform and instead leveraging physical analogs and simulation. This paper outlines the software and hardware infrastructure of the competing vehicle, touching on issues pertaining sensors, hardware, and the software architecture employed on the autonomous vehicle. We discuss the LiDAR-camera fusion approach for object detection and the three-tier route planning and following systems.
Technical Paper

Estimating Battery State-of-Charge using Machine Learning and Physics-Based Models

2023-04-11
2023-01-0522
Lithium-ion and Lithium polymer batteries are fast becoming ubiquitous in high-discharge rate applications for military and non-military systems. Applications such as small aerial vehicles and energy transfer systems can often function at C-rates greater than 1. To maximize system endurance and battery health, there is a need for models capable of precisely estimating the battery state-of-charge (SoC) under all temperature and loading conditions. However, the ability to perform state estimation consistently and accurately to within 1% error has remained unsolved. Doing so can offer enhanced endurance, safety, reliability, and planning, and additionally, simplify energy management. Therefore, the work presented in this paper aims to study and develop experimentally validated mathematical models capable of high-accuracy battery SoC estimation.
Journal Article

Active Learning Optimization for Boundary Identification Using Machine Learning-Assisted Method

2022-03-29
2022-01-0783
Identifying edge cases for designed algorithms is critical for functional safety in autonomous driving deployment. In order to find the feasible boundary of designed algorithms, simulations are heavily used. However, simulations for autonomous driving validation are expensive due to the requirement of visual rendering, physical simulation, and AI agents. In this case, common sampling techniques, such as Monte Carlo Sampling, become computationally expensive due to their sample inefficiency. To improve sample efficiency and minimize the number of simulations, we propose a tailored active learning approach combining the Support Vector Machine (SVM) and the Gaussian Process Regressor (GPR). The SVM learns the feasible boundary iteratively with a new sampling point via active learning. Active Learning is achieved by using the information of the decision boundary of the current SVM and the uncertainty metric calculated by the GPR.
Technical Paper

Traffic State Identification Using Matrix Completion Algorithm Under Connected and Automated Environment

2021-12-15
2021-01-7004
Traffic state identification is a key problem in intelligent transportation system. As a new technology, connected and automated vehicle can play a role of identifying traffic state with the installation of onboard sensors. However, research of lane level traffic state identification is relatively lacked. Identifying lane level traffic state is helpful to lane selection in the process of driving and trajectory planning. In addition, traffic state identification precision with low penetration of connected and automated vehicles is relatively low. To fill this gap, this paper proposes a novel method of identifying traffic state in the presence of connected and automated vehicles with low penetration rate. Assuming connected and automated vehicles can obtain information of surrounding vehicles’, we use the perceptible information to estimate imperceptible information, then traffic state of road section can be inferred.
Technical Paper

Parallel Load Balancing Strategies for Mesh-Independent Spray Vaporization and Collision Models

2021-04-06
2021-01-0412
Appropriate spray modeling in multidimensional simulations of diesel engines is well known to affect the overall accuracy of the results. More and more accurate models are being developed to deal with drop dynamics, breakup, collisions, and vaporization/multiphase processes; the latter ones being the most computationally demanding. In fact, in parallel calculations, the droplets occupy a physical region of the in-cylinder domain, which is generally very different than the topology-driven finite-volume mesh decomposition. This makes the CPU decomposition of the spray cloud severely uneven when many CPUs are employed, yielding poor parallel performance of the spray computation. Furthermore, mesh-independent models such as collision calculations require checking of each possible droplet pair, which leads to a practically intractable O(np2/2) computational cost, np being the total number of droplets in the spray cloud, and additional overhead for parallel communications.
Technical Paper

Design of a Mild Hybrid Electric Vehicle with CAVs Capability for the MaaS Market

2020-04-14
2020-01-1437
There is significant potential for connected and autonomous vehicles to impact vehicle efficiency, fuel economy, and emissions, especially for hybrid-electric vehicles. These improvements could have large-scale impact on oil consumption and air-quality if deployed in large Mobility-as-a-Service or ride-sharing fleets. As part of the US Department of Energy's current Advanced Vehicle Technology Competition (AVCT), EcoCAR: The Mobility Challenge, Mississippi State University’s EcoCAR Team is redesigning and doing the development work necessary to convert a conventional gasoline spark-ignited 2019 Chevy Blazer into a hybrid-electric vehicle with SAE Level 2 autonomy. The target consumer segments for this effort are the Mobility-as-a-Service fleet owners, operators and riders. To accomplish this conversion, the MSU team is implementing a P4 mild hybridization strategy that is expected to result in a 30% increase in fuel economy over the stock Blazer.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

2018-04-03
2018-01-1078
We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.
Technical Paper

Effect of Equivalence Ratio on the Particulate Emissions from a Spark-Ignited, Direct-Injected Gasoline Engine

2013-04-08
2013-01-1560
The effect of equivalence ratio on the particulate size distribution (PSD) in a spark-ignited, direct-injected (SIDI) engine was investigated. A single-cylinder, four-stroke, spark-ignited direct-injection engine fueled with certification gasoline was used for the measurements. The engine was operated with early injection during the intake stroke. Equivalence ratio was swept over the range where stable combustion was achieved. Throughout this range combustion phasing was held constant. Particle size distributions were measured as a function of equivalence ratio. The data show the sensitivity of both engine-out particle number and particle size to global equivalence ratio. As equivalence ratio was increased a larger fraction of particles were due to agglomerates with diameters ≻ 100 nm. For decreasing equivalence ratio smaller particles dominate the distribution. The total particle number and mass increased non-linearly with increasing equivalence ratio.
Technical Paper

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes

2013-04-08
2013-01-0567
High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Journal Article

High Resolution Scalar Dissipation Measurements in an IC Engine

2009-04-20
2009-01-0662
The ability to make fully resolved turbulent scalar field measurements has been demonstrated in an internal combustion engine using one-dimensional fluorobenzene fluorescence measurements. Data were acquired during the intake stroke in a motored engine that had been modified such that each intake valve was fed independently, and one of the two intake streams was seeded with the fluorescent tracer. The scalar energy spectra displayed a significant inertial subrange that had a −5/3 wavenumber power dependence. The scalar dissipation spectra were found to extend in the high-wavenumber regime, to where the magnitude was more than two decades below the peak value, which indicates that for all practical purposes the measurements faithfully represent all of the scalar dissipation in the flow.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

Initial Estimation of the Piston Ring Pack Contribution to Hydrocarbon Emissions from a Small Engine

2007-10-29
2007-01-4014
The contribution to the engine-out hydrocarbon (HC) emissions from fuel that escapes the main combustion event in piston ring crevices was estimated for an air-cooled, V-twin utility engine. The engine was run with a homogeneous pre-vaporized mixture system that avoids the presence of liquid films in the cylinder, and their resulting contribution to the HC emissions. A simplified ring pack gas flow model was used to estimate the ring pack contribution to HC emissions; the model was tested against the experimentally measured blowby. At high load conditions the model shows that the ring pack returns to the cylinder a mass of HC that exceeds that observed in the exhaust, and thus, is the dominant contributor to HC emissions. At light loads, however, the model predicts less HC mass returned from the ring pack than is observed in the exhaust. Time-resolved HC measurements were performed and used to assess the effect of combustion quality on HC emissions.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

Measurement of Diesel Spray Impingement and Fuel Film Characteristics Using Refractive Index Matching Method

2007-04-16
2007-01-0485
The fuel film thickness resulting from diesel fuel spray impingement was measured in a chamber at conditions representative of early injection timings used for low temperature diesel combustion. The adhered fuel volume and the radial distribution of the film thickness are presented. Fuel was injected normal to the impingement surface at ambient temperatures of 353 K, 426 K and 500 K, with densities of 10 kg/m3 and 25 kg/m3. Two injectors, with nozzle diameters of 100 μm and 120 μm, were investigated. The results show that the fuel film volume was strongly affected by the ambient temperature, but was minimally affected by the ambient density. The peak fuel film thickness and the film radius were found to increase with decreased temperature. The fuel film was found to be circular in shape, with an inner region of nearly constant thickness. The major difference observed with temperature was a decrease in the radial extent of the film.
Technical Paper

Adapting Farm Equipment for Workers with Disabilities

2004-10-26
2004-01-2704
Farm workers experience a very high incidence of injuries leading to physical and cognitive (strokes, TBI) disabilities. Since 1991, the AgrAbility Project 2 and its staff have provided direct assistance and education to many U.S. farmers and farm workers. If farmers, ranchers or farm workers who become disabled continue to be employed in agriculture, often their agricultural operation must be modified and/or agricultural machinery must be modified or adaptive equipment purchased to meet their new needs. Some common tractor modifications include operator lifts, hand controls, added/modified steps and handrails, automated hitches, and custom seating. Some modifications are commercially available but others are done on an individual need basis. AgrAbility staff would welcome the opportunity to work closer with farm equipment manufacturers to create modifications that would make farming and ranching easier and safer for all.
Technical Paper

PIV Measurements of In-Cylinder Flow in a Four-Stroke Utility Engine and Correlation with Steady Flow Results

2004-09-27
2004-32-0005
Large-scale flows in internal combustion engines directly affect combustion duration and emissions production. These benefits are significant given increasingly stringent emissions and fuel economy requirements. Recent efforts by engine manufacturers to improve in-cylinder flows have focused on the design of specially shaped intake ports. Utility engine manufacturers are limited to simple intake port geometries to reduce the complexity of casting and cost of manufacturing. These constraints create unique flow physics in the engine cylinder in comparison to automotive engines. An experimental study of intake-generated flows was conducted in a four-stroke spark-ignition utility engine. Steady flow and in-cylinder flow measurements were made using three simple intake port geometries at three port orientations. Steady flow measurements were performed to characterize the swirl and tumble-generating capability of the intake ports.
Technical Paper

Optimization of Diesel Engine Operating Parameters Using Neural Networks

2003-10-27
2003-01-3228
Neural networks are useful tools for optimization studies since they are very fast, so that while capturing the accuracy of multi-dimensional CFD calculations or experimental data, they can be run numerous times as required by many optimization techniques. This paper describes how a set of neural networks trained on a multi-dimensional CFD code to predict pressure, temperature, heat flux, torque and emissions, have been used by a genetic algorithm in combination with a hill-climbing type algorithm to optimize operating parameters of a diesel engine over the entire speed-torque map of the engine. The optimized parameters are mass of fuel injected per cycle, shape of the injection profile for dual split injection, start of injection, EGR level and boost pressure. These have been optimized for minimum emissions. Another set of neural networks have been trained to predict the optimized parameters, based on the speed-torque point of the engine.
X