Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Study of the Fuel Efficiency and the Thermal Management of a Fuel Cell Powered Long-Haul Vehicle

2023-04-11
2023-01-0764
In the future, conventional powertrains will increasingly be supplied by sustainable energy sources. Long-haul freight transport requires efficient energy storage and the ability to refuel quickly. For this reason, hydrogen-powered PEM fuel cells are being discussed as a future energy source for long-distance vehicles. However, there are numerous challenges in packaging, system cooling and service life. Above all, the dissipation of the fuel cell’s heat losses places high demands on the design of the cooling system due to the relatively low operating temperature. In the presented study, a complete generic drive train of a long-distance commercial vehicle was set up within a suitable simulation environment to investigate the required sizes of the fuel cell stack, the HV battery, the hydrogen tanks, and the cooling circuit.
Technical Paper

Comparison of Different Fuel Operations of a Multi-Fuel Single-Disk Rotary Engine through Thermodynamic Analysis

2022-04-28
2022-01-5032
Today unmanned aerial vehicle applications are powered by Wankel rotary engines due to their high power-to-weight ratio and smooth operation. Most of modern propulsion units for unmanned aerial vehicles are designed to run on high volatile fuels such as aviation gasoline (AvGas). However, the refueling infrastructure in aviation is geared toward the most used aviation fuel, kerosene. This and other reasons, such as significantly lower price and easier fire protection regulations, lead to the desire to be able to operate these propulsion units with kerosene. Opposed to reciprocating engines, the low compression ratio of rotary engines prevents the implementation of compression ignition combustion processes. Therefore, the purpose of this paper is to discuss the operation of a spark-ignited rotary engine on different fuels. In detail, different qualities of kerosene as well as gasoline/kerosene blends are compared together.
Technical Paper

Numerical Investigation of Tonal Noise at Automotive Side Mirrors due to Aeroacoustic Feedback

2020-09-30
2020-01-1514
This paper describes the possibility to resolve aeroacoustic feedback with a commercial 2nd/3rd order finite volume CFD code [1]. After a first comparison to a NACA 0012 test case, tonal noise components of a realistic automotive side view mirror are validated with in-house wind tunnel measurements. A zonal RANS/LES approach is used to ensure a realistic flow around the exterior side mirror mounted on a Mercedes-Benz passenger car. The provided compressible large eddy simulations are using non-reflecting boundary conditions in combination with a sponge zone approach to reduce hydrodynamic fluctuations and are in great accordance to measurements. The possibility of localizing and investigating the underlying feedback mechanism enables the chance for a targeted design of different appropriate remedies, which are finally confirmed by means of experimental comparison.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Technical Paper

Performance Improvement of an Asymmetric Twin Scroll Turbocharger Turbine through Secondary Flow Injection

2020-04-14
2020-01-1011
A powerful and efficient turbocharger turbine benefits the engine in many aspects, such as better transient response, lower NOx emissions and better fuel economy. The turbine performance can be further improved by employing secondary flow injection through an injector over the shroud section. A secondary flow injection system can be integrated with a conventional turbine without affecting its original design parameters, including the rotor, volute, and back disk. In this study, a secondary flow injection system has been developed to fit for an asymmetric twin-scroll turbocharger turbine, which was designed for a 6-cylinder heavy-duty diesel engine, aiming at improving the vehicle’s performance at 1100 rpm under full-loading conditions. The shape of the flow injector is similar to a single-entry volute but can produce the flow angle in both circumferential and meridional directions when the flow leaves the injector and enters the shroud cavity.
Journal Article

Optimization of an Asymmetric Twin Scroll Volute Turbine under Pulsating Engine Boundary Conditions

2020-04-14
2020-01-0914
Future CO2 emission legislation requires the internal combustion engine to become more efficient than ever. Of great importance is the boosting system enabling down-sizing and down-speeding. However, the thermodynamic coupling of a reciprocating internal combustion engine and a turbocharger poses a great challenge to the turbine as pulsating admission conditions are imposed onto the turbocharger turbine. This paper presents a novel approach to a turbocharger turbine development process and outlines this process using the example of an asymmetric twin scroll turbocharger applied to a heavy duty truck engine application. In a first step, relevant operating points are defined taking into account fuel consumption on reference routes for the target application. These operation points are transferred into transient boundary conditions imposed on the turbine.
Technical Paper

Energetic Costs of ICE Starts in (P)HEV - Experimental Evaluation and Its Influence on Optimization Based Energy Management Strategies

2019-09-09
2019-24-0203
The overall efficiency of hybrid electric vehicles largely depends on the design and application of its energy management system (EMS). Despite the load coordination when operating the system in a hybrid mode, the EMS accounts for state changes between the different driving modes. Whether a transition between pure electric driving and internal combustion engine (ICE) powered driving is beneficial depends, among others, on the respective operation point, the route ahead as well as on the energetic expense for the engine start itself. The latter results from a complex interaction of the powertrain components and has a tremendous impact on the efficiency and quality of EMSs. Optimization based methods such as dynamic programming serve as benchmark for the design process of rule based control strategies. In case no energetic expenses are assigned to a state change, the resulting EMS suffers from being sub-optimal regarding the fuel consumption.
Technical Paper

Efficiency Prediction for Optimal Load Point Determination of Internal Combustion Engines in Hybrid Drives

2019-09-09
2019-24-0204
The efficiency of a Hybrid Electric Vehicle (HEV) strongly depends on its implemented Energy Management Strategy (EMS) that splits the driver’s torque request onto the Internal Combustion Engine (ICE) and Electric Motor (EM). For calibrating these EMS, usually, steady-state efficiency maps of the power converters are used. These charts are mainly derived from measurements under optimal conditions. However, the efficiency of ICEs fluctuates strongly under different conditions. Among others, these fluctuations can be induced by charge air temperature, engine oil temperature or the fuel’s knock resistance. This paper proposes a new approach for predicting the impact of any external influence onto the ICE efficiency. This is done by computing the actual deviation from the optimal reference ignition timing and adjusting the result by actual oil temperature and target air-to-fuel ratio.
Technical Paper

Biogenous Ethanol: CO2 Savings and Operation in a Dual-Fuel Designed Diesel Engine

2019-09-09
2019-24-0040
The usage of ethanol and two different mixtures of ethanol and gasoline (E85 and E65) wаs investigated on a modified diesel engine designed to work in a dual-fuel combustion mode with intake manifold alcohol injection. The maximum ratio of alcohol to diesel fuel was limited by irregular combustion phenomena like degrading combustion quality and poor process controllability at low load and knock as well as auto-ignition at high load. With rising alcohol amount, a significant reduction of soot mass and particle number was observed. At some testing points, substituting diesel with ethanol, E65 or E85 led to a reduction of NOx emissions; however, the real benefit concerning the nitrogen oxides was introduced by the mitigation of the soot-NOx trade-off. The indicated engine efficiency in dual-fuel mode showed an extended tolerance against high EGR rates. It was significantly improved with enhanced substitution ratios at high loads, whereas it dropped at low loads.
Technical Paper

Experimental PEM-Fuel Cell Range Extender System Operation and Parameter Influence Analysis

2019-04-02
2019-01-0378
Fuel cells as alternative propulsion systems in vehicles can achieve higher driving ranges and shorter refueling times compared to pure battery-electric vehicles, while maintaining the local zero-emission status. However, to take advantage of pure battery electric driving, an externally rechargeable battery can be combined with a fuel cell range extender. As part of a research project, an efficient air supply system for a fuel cell range extender was developed. To this end, a 25 kW PEM fuel cell system test bench was set up. The different parameter influences of the test bench, in particular of the air supply system, were analyzed and evaluated in terms of stack/system efficiency and functionality. The control software of the test bench was specifically developed for the flexible operating parameter variation. All adjustable variables of the system (air ratio, stack temperature, pressure, etc.) were varied and evaluated at steady-state operating points.
Technical Paper

Development of the TOP TIERTM Diesel Standard

2019-04-02
2019-01-0264
The TOP TIERTM Diesel fuel standard was first established in 2017 to promote better fuel quality in marketplace to address the needs of diesel engines. It provides an automotive recommended fuel specification to be used in tandem with regional diesel fuel specifications or regulations. This fuel standard was developed by TOP TIERTM Diesel Original Equipment Manufacturer (OEM) sponsors made up of representatives of diesel auto and engine manufacturers. This performance specification developed after two years of discussions with various stakeholders such as individual OEMs, members of Truck and Engine Manufacturers Association (EMA), fuel additive companies, as well as fuel producers and marketers. This paper reviews the major aspects of the development of the TOP TIERTM Diesel program including implementation and market adoption challenges.
Technical Paper

Daimler Aeroacoustic Wind Tunnel: 5 Years of Operational Experience and Recent Improvements

2018-09-24
2018-01-5038
Since 2013 the new Daimler Aeroacoustic Wind Tunnel (AAWT) is in operation at the Mercedes-Benz Technology Center in Sindelfingen, Germany. This construction was the second stage of a wind tunnel center project, which was launched in 2007 and started with the climatic wind tunnels including workshop and office areas. The AAWT features a test facility for full-scale cars and vans with a nozzle exit area of 28 m2, a five-belt system, and underfloor balance to measure forces with best possible road simulation. With a remarkable low background noise level of the wind tunnel, vehicle acoustics can be investigated under excellent conditions using high-performance measurement systems. An overview is given about the building and the design features of the wind tunnel layout. The aerodynamic and aeroacoustic properties are summarized. During the first years of operation, further improvements regarding the wind tunnel background noise and vehicle handling were made.
Technical Paper

Application and Simulation of Micro-Perforated Panels in HVAC Systems

2018-06-13
2018-01-1514
To reduce noise in a HVAC system for railway application the usage of micro-perforated panels (MPP) is proposed. MPPs offer some favorable characteristics, like robustness and durability in harsh environments and the possibility to optimize absorption in desired frequency bands. The underlying acoustic mechanism can be modelled via an equivalent fluid in accordance with the Johnson-Champoux-Allard (JCA) approach, treating the MPPs as a porous material with rigid frame. This allows to conduct the necessary acoustic pre-evaluation in complex HVAC application scenarios in order for the MPPs to substitute the commonly used foam and fibrous absorber materials.
Technical Paper

Investigation of the Disc Deflection Behavior of Shim Valves in Vehicle Shock Absorbers

2018-04-03
2018-01-0701
Todays tuning of hydraulic vehicle shock absorbers is mainly an empirical iterative process performed in time-consuming and expensive ride tests, whereas the majority of damper simulation models used for investigating vehicle ride behavior is based on an abstract parameterization. For the manufacturing of automotive dampers, however, the valve code is essential. Minor changes in the valve code describing the shim stack in the hydraulic valves may have a noticeable impact on the damper characteristics, while the physical effects are still not sufficiently understood. Therefore, the paper presents a detailed physics-based structural model to investigate the pressure-deflection behavior of shim stacks and the influence of specific discs in the stack. The model includes a variety of effects like friction and preload, and is capable to predict the damper characteristics.
Technical Paper

Development of a LIF-Imaging System for Simultaneous High-Speed Visualization of Liquid Fuel and Oil Films in an Optically Accessible DISI Engine

2018-04-03
2018-01-0634
Downsizing and direct injection in modern DISI engines can lead to fuel impinging on the cylinder walls. The interaction of liquid fuel and engine oil due to fuel impinging on the cylinder wall causes problems in both lubrication and combustion. To analyze this issue with temporal and spatial resolution, we developed a laser-induced fluorescence (LIF) system for simultaneous kHz-rate imaging of fuel and oil films on the cylinder wall. Engine oil was doped with traces of the laser dye pyrromethene 567, which fluoresces red after excitation by 532 nm laser radiation. Simultaneously, the liquid fuel was visualized by UV fluorescence of an aromatic “tracer” in a non-fluorescent surrogate fuel excited at 266 nm. Two combinations of fuel and tracer were investigated, iso-octane and toluene as well as a multi-component surrogate and anisole. The fluorescence from oil and fuel was spectrally separated and detected by two cameras.
Technical Paper

Engine Efficiency Optimization under Consideration of NOX- and Knock-Limits for Medium Speed Dual Fuel Engines in Cylinder Cut-Out Operation

2018-04-03
2018-01-1151
As a consequence of the global warming, more strict maritime emission regulations are globally in force or will become applicable in the near future (e.g. NOX and SOX emission control areas). The tough competition puts economic pressure on the maritime transport industry. Therefore, the demand for efficient and mostly environmental neutral propulsion systems that meet the environmental legislations and minimize the cargo costs are immense. Medium speed dual fuel engines are in accordance with the strict maritime emissions legislation IMO Tier III. They do not require any exhaust gas aftertreatment, are economically competitive, and allow fuel flexibility. These engines deliver the highest efficiency in high load operation. A valuable approach to improve the efficiency and reduce the environmental impact in low and part load is represented by the electronic cylinder cut-out. Thereby, the natural gas admission is deactivated and the valves are kept activated.
Technical Paper

Improved Full Vehicle Finite Element Tire Road Noise Prediction

2017-06-05
2017-01-1901
This paper presents the application to full vehicle finite element simulation of a steady state rolling tire/wheel/cavity finite element model developed in previous work and validated at the subsystem level. Its originality consists in presenting validation results not only for a wheel on a test bench, but for a full vehicle on the road. The excitation is based on measured road data. Two methods are considered: enforced displacement on the patch centerline and enforced displacement on a 2D patch mesh. Finally the importance of taking the rotation of the tire into account is highlighted. Numerical results and test track measurements are compared in the 20-300 Hz frequency range showing good agreement for wheel hub vibration as well as for acoustic pressure at the occupant’s ears.
Technical Paper

The Truck of the Future: Autonomous and Connected Driving at Daimler Trucks

2017-05-10
2017-01-1931
Due to the continuous increasing highway transport and the decreasing investments into infrastructure a better usage of the installed infrastructure is indispensable. Therefore the operation and interoperation of assistance and telematics systems become more and more necessary. Regarding these facts Highway Pilot was developed at Daimler Trucks. The Highway Pilot System moves the truck highly automated and independent from other road users within the allowed speed range and the required security distance. Daimler Trucks owns diverse permissions in Germany and the USA for testing these technologies on public roads. Next generation is the Highway Pilot Connect System that connects three highly automated driving trucks. The connection is established via Vehicle-to-Vehicle communication (V2V).
Journal Article

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress

2017-03-28
2017-01-1319
A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
Technical Paper

A New Approach to Predicting Component Temperature Collectives for Vehicle Thermal Management

2017-03-28
2017-01-0134
There is a growing need for life-cycle data – so-called collectives – when developing components like elastomer engine mounts. Current standardized extreme load cases are not sufficient for establishing such collectives. Supplementing the use of endurance testing data, a prediction methodology for component temperature collectives utilizing existing 3D CFD simulation models is presented. The method uses support points to approximate the full collective. Each support point is defined by a component temperature and a position on the time axis of the collective. Since it is the only currently available source for component temperature data, endurance testing data is used to develop the new method. The component temperature range in this data set is divided in temperature bands. Groups of driving states are determined which are each representative of an individual band. Each of the resulting four driving state spaces is condensed into a substitute load case.
X