Refine Your Search

Search Results

Technical Paper

Numerical Simulations of Pre-Chamber Combustion in an Optically Accessible RCEM

2019-04-02
2019-01-0224
In this work, numerical simulations of an automotive-sized scavenged pre-chamber mounted in an optically-accessible rapid compression-expansion machine (RCEM) have been carried out using two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES). The RANS approach is combined with the G-equation combustion model, whereas the LES approach is coupled with the flamelet generated manifold (FGM) model for partially-premixed combustion. Simulation results are compared with experimental data in terms of OH* chemiluminescence in the main chamber. Both RANS and LES results were found to qualitatively reproduce the main features observed experimentally in terms of spatial flame development. Simulation results are further analysed by means of early flame propagation within the pre-chamber (related to the fuel and turbulence intensity distributions) and the ignition process in the main chamber.
Technical Paper

Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES

2019-04-02
2019-01-0198
It is well-known that the spatial distribution of turbulence intensity and fuel concentration at spark-time play a pivotal role on the flame development within the pre-chamber in gas engines equipped with a scavenged pre-chamber. The combustion within the pre-chamber is in turn a determining factor in terms of combustion behaviour in the main chamber, and accordingly it influences the engine efficiency as well as pollutant emissions such as NOx and unburned hydrocarbons. This paper presents a numerical analysis of fuel concentration and turbulence distribution at spark time for an automotive-sized scavenged pre-chamber mounted at the head of a rapid compression-expansion machine (RCEM). Two different pre-chamber orifice orientations are considered: straight and tilted nozzles. The latter introduce a swirling flow within the pre-chamber. Simulations have been carried out using with two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES).
Technical Paper

Numerical Investigation of Soot Dynamics at Engine-Relevant Conditions

2018-04-03
2018-01-0204
Formation of soot in an auto-igniting n-dodecane spray under diesel engine relevant conditions has been investigated numerically. As opposed to research addressing turbulence-chemistry interaction (TCI) by coupling diffusive turbulence models with more sophisticated models in the context of Reynolds-Averaged Navier-Stokes equations (RANS), this study employs the advanced sub-grid scale k-equation model in the framework of a Large Eddy Simulation (LES) together with the uninvolved Direct Integration (DI) approach. A reduced n-heptane chemical mechanism has been employed and artificially accelerated in order to predict the ignition for n-dodecane accurately. Soot processes have been modelled with an extended version of the semi-empirical, two-equation model of Leung, which considers C2H2 as the soot precursor and accounts for particle inception, surface growth by C2H2 addition, oxidation by O2, oxidation by OH and particle coagulation.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Journal Article

Extension of the Phenomenological 3-Arrhenius Auto-Ignition Model for Six Surrogate Automotive Fuels

2016-04-05
2016-01-0755
An existing three-stage ignition delay model which has seen successful application to Primary Reference Fuels (PRFs) has been extended to six surrogate fuels which constitute potential candidates for future Homogeneous Charge Compression Ignition (HCCI) engines. The fuels include petroleum-derived and oxygenated components and can be divided into low, intermediate and high cetane number groups. A new methodology to obtain the model parameters is presented which relies jointly on simulation and experimental data: in a first step, constant volume adiabatic reactor simulations using chemical kinetic mechanisms are performed to generate ignition delays for a very wide range of conditions, namely variations in equivalence ratio, Exhaust Gas Recirculation (EGR), pressure and temperature.
Technical Paper

THE Post Injection: Coalescence of 3D CFD-CMC Simulation, 2D Visualizations in a Constant Volume Chamber and Application in a Modern Passenger Car Diesel Engine

2015-09-06
2015-24-2515
Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in NOx emissions. However, an accurate, widely applicable rule of how to parameterize a post injection such that it provides a maximum reduction of PM emissions does not exist. Moreover, the underlying mechanisms are not thoroughly understood. In past research, the underlying mechanisms have been investigated in engine experiments, in constant volume chambers and also using detailed 3D CFD-CMC simulations. It has been observed that soot reduction due to a post injection is mainly due to two reasons: increased turbulence from the post injection during soot oxidation and lower soot formation due to lower amount of fuel in the main combustion at similar load conditions. Those studies do not show a significant temperature rise caused by the post injection.
Technical Paper

Experimental Investigation on the Characteristics of Sprays Representative for Large 2-Stroke Marine Diesel Engine Combustion Systems

2015-09-01
2015-01-1825
Fuel spray propagation and its morphology are important aspects for the in-cylinder mixture preparation in Diesel engines. Since there is still a lack of suitable measurements with regard to large 2-stroke marine Diesel engines combustion systems, a comprehensive data set of spray characteristics has been investigated using a test facility reflecting the specific features of such combustion systems. The spray penetration, area and cone angle were analysed for a variation of gas density (including the behaviour at evaporation and non-evaporating conditions), injection pressure and nozzle diameter. Moreover, spray and swirl flow interaction as well as fuel quality influences have been studied. To analyse the impacts and effects of each measured parameter, an empirical correlation for the spray penetration has been derived and discussed for all measurements presented.
Journal Article

Influence of EGR on Post-Injection Effectiveness in a Heavy-Duty Diesel Engine Fuelled with n-Heptane

2014-10-13
2014-01-2633
Numerical simulations of a heavy-duty diesel engine fuelled with n-heptane have been performed with the conditional moment closure (CMC) combustion model and an embedded two-equation soot model. The influence of exhaust gas recirculation on the interaction between post- and main- injection has been investigated. Four different levels of EGR corresponding to intake ambient oxygen volume fractions of 12.6, 15, 18 and 21% have been considered for a constant intake pressure and temperature and unchanged injection configuration. Simulation results have been compared to the experimental data by means of pressure and apparent heat-release rate (AHRR) traces and in-cylinder high-speed imaging of natural soot luminosity and planar laser-induced incandescence (PLII). The simulation was found to reproduce the effect of EGR on AHRR evolutions very well, for both single- and post-injection cases.
Journal Article

Numerical Modelling and Experimental Characterization of a Pressure-Assisted Multi-Stream Injector for SCR Exhaust Gas After-Treatment

2014-10-13
2014-01-2822
Simulations for a pressure-assisted multi-stream injector designed for urea-dosing in a selective catalytic reduction (SCR) exhaust gas system have been carried out and compared to measurements taken in an optically accessible high-fidelity flow test rig. The experimental data comprises four different combinations of mass flow rate and temperature for the gas stream with unchanged injection parameters for the spray. First, a parametric study is carried out to determine the importance of various spray sub-models, including atomization, spray-wall interaction, buoyancy as well as droplet coalescence. Optimal parameters are determined using experimental data for one reference operating condition.
Technical Paper

Optical Investigations of Soot Reduction Mechanisms using Post-Injections in a Cylindrical Constant Volume Chamber (CCVC)

2014-10-13
2014-01-2839
Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in the NOx emissions. In earlier research it was observed that soot reduction due to a post injection is based on three reasons: increased turbulence (1) and heat (2) from the post injection during soot oxidation and lower soot formation due to smaller main injection for similar load conditions (3). The second effect of heat addition during the soot oxidation is debated in the literature. The experimental investigation presented in the current work provides insight into the underlying mechanisms of soot formation and reduction using post injections under different operating conditions. The experimental data have been obtained using a cylindrical constant volume chamber with high optical access. The soot evolution has been obtained using 2-color-pyrometry.
Journal Article

Numerical Study of the Influence of EGR on In-Cylinder Soot Characteristics in a Heavy-Duty Diesel Engine using CMC

2014-04-01
2014-01-1134
This paper presents numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia Laboratories performed with the conditional moment closure (CMC) model employing a reduced n-heptane chemical mechanism coupled with a two-equation soot model. The influence of exhaust gas recirculation (EGR) on in-cylinder processes is studied considering different ambient oxygen volume fractions (8 - 21 percent), while maintaining intake pressure and temperature as well as the injection configuration unchanged. This corresponds to EGR rates between 0 and 65 percent. Simulation results are first compared with experimental data by means of apparent heat release rate (AHRR) and temporally resolved in-cylinder soot mass, where a quantitative comparison is presented. The model was found to fairly well reproduce ignition delays as well as AHRR traces along the EGR variation with a slight underestimation of the diffusion burn portion.
Technical Paper

Integration of a Cool-Flame Heat Release Rate Model into a 3-Stage Ignition Model for HCCI Applications and Different Fuels

2014-04-01
2014-01-1268
The heat release of the low temperature reactions (LTR or cool-flame) under Homogeneous Charge Compression Ignition (HCCI) combustion has been quantified for five candidate fuels in an optically accessible Rapid Compression Expansion Machine (RCEM). Two technical fuels (Naphthas) and three primary reference fuels (PRF), (n-heptane, PRF25 and PRF50) were examined. The Cetane Numbers (CN) of the fuels range from 35 to 56. Variation of the operating parameters has been performed, in regard to initial charge temperature of 383, 408, and 433K, exhaust gas recirculation (EGR) rate of 0%, 25%, and 50%, and equivalence ratio of 0.29, 0.38, 0.4, 0.53, 0.57, and 0.8. Pressure indication measurements, OH-chemiluminescence imaging, and passive spectroscopy were simultaneously implemented. In our previous work, an empirical, three-stage, Arrhenius-type ignition delay model, parameterized on shock tube data, was found to be applicable also in a transient, engine-relevant environment.
Journal Article

Ignition Delays of Different Homogeneous Fuel-air Mixtures in a Rapid Compression Expansion Machine and Comparison with a 3-Stage-ignition Model Parameterized on Shock Tube Data

2013-10-14
2013-01-2625
An optically accessible Rapid Compression Expansion Machine (RCEM) has been used to investigate the homogeneous auto-ignition of five candidate fuels for Homogenous Charge Compression Ignition (HCCI) combustion. Two technical fuels (Naphthas) and three primary reference fuels (PRF), (n-heptane, PRF25 and PRF50) were examined. The Cetane Numbers (CN) of the fuels range from 35 to 56. The PRF25 and PRF50 were selected in order to approximately match the CN of the two Naphthas. Variation of the operating parameters has been performed, in regard to initial charge temperature of 383, 408, and 433K, exhaust gas recirculation (EGR) rate of 0%, 25%, and 50%, and equivalence ratio of 0.29, 0.38, 0.4, 0.53, 0.57, and 0.8. Pressure indication measurements, OH-chemiluminescence imaging, and passive spectroscopy were simultaneously implemented.
Journal Article

Experimental Investigation of Multi-In-Cylinder Pyrometer Measurements and Exhaust Soot Emissions Under Steady and Transient Operation of a Heavy-Duty Diesel Engine

2013-09-08
2013-24-0177
Future engine emission legislation regulates soot from Diesel engines strictly and requires improvements in engine calibration, fast response sensor equipment and exhaust gas aftertreatment systems. The in-cylinder phenomena of soot formation and oxidation can be analysed using a pyrometer with optical access to the combustion chamber. The pyrometer collects the radiation of soot particles during diffusion combustion, and allows the calculation of soot temperature and a proportional value for the in-cylinder soot density (KL). A four-cylinder heavy-duty Diesel engine was equipped in all cylinders with prototype pyrometers and state of the art pressure transducers. The cylinder specific data was recorded crank angle-resolved for a set of steady-state and transient operating conditions, as well as exhaust gas recirculation (EGR) addition and over a wide range of soot emissions.
Journal Article

Predicting In-Cylinder Soot in a Heavy-Duty Diesel Engine for Variations in SOI and TDC Temperature Using the Conditional Moment Closure Model

2013-09-08
2013-24-0016
Numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia National Laboratories have been performed with the multidimensional conditional moment closure (CMC) model using a reduced n-heptane chemical mechanism coupled with a two-equation soot model. Simulation results are compared to the high-fidelity experimental data by means of pressure traces, apparent heat release rate (AHRR) and time-resolved in-cylinder soot mass derived from optical soot luminosity and multiple wavelength pyrometry in conjunction with high speed soot cloud imaging. In addition, spatial distributions of soot relevant quantities are given for several operating conditions.
Technical Paper

Experimental Validation of a Global Reaction Model for a Range of Gasolines and Kerosenes under HCCI Conditions

2011-09-11
2011-24-0024
Compact and computationally efficient reaction models capable of accurately predicting ignition delay and heat release rates are a prerequisite for the development of strategies to control and optimize HCCI engines. In particular for full boiling range fuels exhibiting two-stage ignition a tremendous demand exists in the engine development community. To this end, in a previous investigation, a global reaction mechanism was developed and fitted to data from shock tube experiments for n-heptane and five full boiling range fuels. By means of a genetic algorithm, for each of these fuels, a set of reaction rate parameters (consisting of pre-exponential factors, activation energies and concentration exponents) has been defined, without any change to the model form.
Journal Article

Transient simulation of NOx reduction over a Fe-Zeolite catalyst in an NH3-SCR system and study of the performance under different operating conditions

2011-08-30
2011-01-2084
The NO reduction in an ammonia SCR converter has been simulated by a 1D+1D model for a single representative channel to parametrically study the characteristics of the system under typical operating conditions. An appropriate model has been selected interpreting the chemical behavior of the system and the parameters are calibrated based on a comprehensive set of experiments with an Fe-Zeolite washcoated monolith for different feed concentrations, temperatures and flow rates. Physical and chemical properties are determined as well as kinetics and rate parameters and the model has been verified by experimental data at different operating conditions. Three different mechanisms for the surface kinetics to model NO reduction have been assessed and the results have been compared in the cases of steady DeNO performance and transient response of the system. Ammonia inhibition is considered in the model since it has a major effect specifically under transient operating conditions.
Journal Article

Soot Emission Measurements and Validation of a Mean Value Soot Model for Common-Rail Diesel Engines during Transient Operation

2009-06-15
2009-01-1904
Measurements of the soot emissions and engine operating parameters from a diesel engine during transient operation were used to investigate the influence of transient operation on the soot emissions, as well as to validate a realtime mean value soot model (MVSM, [1]) for transient operation. To maximize the temporal resolution of the soot emission and engine parameter measurements (in particular EGR), fast instruments were used and their dynamic responses characterized and corrected. During tip-in transients, an increase in the soot emissions was observed due to a short term oxygen deficit compared to steady-state operation. No significant difference was seen between steady-state and transient operation for acceleration transients. When the MVSM was provided with inputs of sufficient temporal resolution, it was capable of reproducing the qualitative and, in part, quantitative soot emission trends.
Technical Paper

A Quasi-Dimensional Model for Estimating the Influence of Hydrogen-Rich Gas Addition on Turbulent Flame Speed and Flame Front Propagation in IC-SI Engines

2005-04-11
2005-01-0232
Addition of hydrogen-rich gas to gasoline in internal combustion engines is gaining increasing interest, as it seems suitable to reach near-zero emission combustion, able to easily meet future stringent regulations. Bottled gas was used to simulate the output of an on-board reformer (21%H2, 24%CO, 55%N2). Measurements were carried out on a 4-stroke, 2-cylinder, 0.5-liter engine, with EGR, in order to calculate the heat release rate through a detailed two-zone model. A quasi-dimensional model of the flame was developed: it consists of a geometrical estimate of the flame surface, which is then coupled with the heat release rate. The turbulent flame speed can then be inferred. The model was then applied to blends of gasoline with hydrogen-rich gas, showing the effect on the flame speed and transition from laminar to turbulent combustion.
Technical Paper

Clean Engine Vehicle A Natural Gas Driven Euro-4/SULEV with 30% Reduced CO2-Emissions

2004-03-08
2004-01-0645
The goal of the Clean Engine Vehicle project (CEV) was the conversion of a gasoline engine to dedicated natural gas operation in order to achieve a significant reduction in CO2 emissions. The targeted reduction was 30% compared with a gasoline vehicle with similar performance. Along with the reduction in emissions, the second major requirement of the project, however, was compliance of the results with Euro-4 and SULEV emission limits. The project entailed modifications to the engine and the pre-existing model-based engine control system, the introduction of an enhanced catalytic converter and downsizing and turbocharging of the engine. As required by the initiators of the project, all components used were commonly available, some of them just being optimized or modified for natural gas operation.
X