Refine Your Search

Topic

Author

Search Results

Standard

Free Motion Headform Impact Tests of Heavy Truck Cab Interiors

2024-04-25
WIP
J2424
This SAE Recommended Practice describes the test procedures for conducting free motion headform testing of heavy truck cab interior surfaces and components. A description of the test set-up, instrumentation, impact configuration, target locations, and data reduction is included.
Standard

Air Brake Actuator Test Procedure, Truck-Tractor, Bus, and Trailers

2024-04-24
WIP
J1469
This SAE Recommended Practice provides procedures and methods for testing service, spring applied parking, and combination brake actuators with respect to durability, function, and environmental performance. A minimum of six test units designated A, B, C, D, E, and F are to be used to perform all tests per 1.1 and 1.2.
Standard

Low-Duty Inertia Dynamometer Hydraulic Brake Wear Test Procedures for Vehicles Above 4536 kg (10000 pounds) of GVWR

2024-04-24
WIP
J3006
This Recommended Practice is derived from OEM and tier-1 laboratory tests and applies to two-axle multipurpose passenger vehicles, or trucks with a GVWR above 4536 kg (10 000 pounds) equipped with hydraulic disc or drum service brakes. Before conducting testing for a specific brake sizes or under specific test conditions, review, agree upon, and document with the test requestor any deviations from the test procedure. Also, the applicable criteria for the final test results and wear rates deemed as significantly different require definition, assessment, and proper documentation; especially as this will determine whether or not Method B testing is needed. This Recommended Practice does not evaluate or quantify other brake system characteristics such as performance, noise, judder, ABS performance, or braking under extreme temperatures or speeds. Minimum performance requirements are not part of this recommended practice.
Standard

Trailer Grade Parking Performance Test Procedure

2024-04-23
WIP
J1452
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to:a. Ability of the parking brake system to lock the braked wheels.b. The trailer holding or sliding on the grade, fully loaded, or unloaded.c. Applied manual effort.d. Unburnished or burnished brake lining friction conditions.e. Down and upgrade directions.
Standard

Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion

2024-04-02
WIP
ARP6420A
The turbine-engine-inlet flow distortion descriptors summarized in this document apply to the effects of inlet total-pressure, planar-wave, and total-temperature distortions. Guidelines on stability margin, destabilizing influences, types and purposes of inlet data, AIP definition, and data acquisition and handling are summarized from AIR5866, AIR5867, ARP1420, and AIR1419. The degree to which these recommendations are applied to a specific program should be consistent with the complexity of the inlet/engine integration. Total-pressure distortion is often the predominant destabilizing element that is encountered and is often the only type of distortion to be considered, i.e, not all types of distortion need to be considered for all vehicles.
Standard

Forward Collision Warning and Automatic Emergency Braking XIL Simulation Procedure and Minimum Performance Requirements - Truck and Bus

2024-03-25
WIP
J3319
This SAE Recommended Practice (RP) establishes uniform vehicle level simulation procedure for Forward Collision Avoidance and Mitigation (FCAM) systems (also identified as Automatic Emergency Braking (AEB) systems) used in highway commercial vehicles and coaches greater than 4535 Kg (10,000 lb.) GVWR. For Hardware-in-the-loop implementation of the recommended practice, the ESC system will be part of the test. This RP does not apply to trailers, dollies, etc. and does not intend to exclude any particular system or sensor technology. These FCAM systems utilize various methodologies to identify, track and communicate data to the operator and vehicle systems to warn, intervene and/or mitigate in the longitudinal control of the vehicle.
Standard

Heavy Duty Truck and Bus Electrical Circuit Performance Requirement for 12/24-Volt Electric Starter Motors

2024-03-22
CURRENT
J3053_202403
The recommended practice describes a design standard that defines the maximum recommended voltage drop of the starting motor main circuits, as well as control system circuits, for 12/24-V starter systems. The battery technologies used in developing this document include the flooded lead acid, gel cell, and AGM. Starting systems supported by NiCd, Lithium Ion, NiZn, etc., or Ultracaps are not included in this document. This document is not intended to be updated or modified to include starter motors rated at voltages above the nominal 24-V electrical system. The starter is basically an electrical-to-mechanical power converter. If you double the available battery power in, you double the peak mechanical power out and double the heat losses. This means that we have to pay special attention to how battery power changes when we change the battery voltage and the effects it may have in overpowering the cranking system.
Standard

Vision Factors Considerations in Rearview Mirror Design

2024-03-18
CURRENT
J985_202403
The design and location of rear-viewing mirrors or systems, and the presentation of the rear view to the driver can best be achieved if the designer and the engineer have adequate references available on the physiological functions of head and eye movements and on the perceptual capabilities of the human visual system. The following information and charts are provided for this purpose. For more complete information of the relationship of vision to forward vision, see SAE SP-279.
Standard

Motor Vehicle Brake Fluid

2024-03-12
CURRENT
J1703_202403
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard

SAE Child Passenger Safety Glossary

2024-03-01
CURRENT
J2939_202403
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada.
Standard

SAE Instrumented Arm User’s Manual

2024-02-27
CURRENT
J2855_202402
This user’s manual covers the instrumented arm for the Hybrid III 5th Percentile Small Female dummy as well as the SID –IIs dummy. It is intended for technicians and engineers who have an interest in assessing arm injury from the use of frontal and side impact airbags. It covers the construction, disassembly and reassembly, available instrumentation, and segment masses.
Standard

Unmanned Systems (UxS) Control Segment (UCS) Architecture: RSA Version of UCS ICD Model

2024-02-23
CURRENT
AIR6516A
This User Guide describes the content of the Rational Software Architect (RSA) version of the UCS Architectural Model and how to use this model within the RSA modeling tool environment. The purpose of the RSA version of the UCS Architectural Interface ICD model is to provide a model for Rational Software Architect (RSA) users, derived from the Enterprise Architect (EA) ICD model (AIR6515). The AIR6515 EA Model, and by derivation, the AIR6516 RSA Model, have been validated to contain the same content as the AS6518 model for: all UCS ICD interfaces all UCS ICD messages all UCS ICD data directly or indirectly referenced by ICD messages and interfaces the Domain Participant, Information, Service and Non-Functional Properties Models
Standard

Sensor Driven Restraint Systems

2024-01-26
WIP
AS7260
• AIRBAG COMPONENT MINIMUM PERFORMANCE REQUIREMENTS • AIRBAG INSTALLATION PERFORMANCE REQUIREMENT Current revision will only contain Part 25 and lapbelt installed airbags. Future revisions will expand to include Structural airbags, 3-point restraint airbag, pre-tensioner etc.
Standard

Power Cylinder Effects on Friction and Fuel Economy

2024-01-22
CURRENT
J2904_202401
This document covers the mechanisms from the power cylinder, which contribute to the mechanical friction of an internal combustion engine. It will not discuss in detail the influence of other engine components or engine driven accessories on friction.
Standard

Truck Tractor Power Outlet for Trailer ABS

2024-01-10
CURRENT
J2247_202401
This SAE Recommended Practice identifies the minimum truck tractor electrical power output of the stop lamp and ABS (antilock brake system) circuits measured at the primary SAE J560 tractor trailer interface connector(s).
Standard

Heavy-Duty Wiring Systems for On-Highway Trucks

2024-01-09
CURRENT
J2202_202401
This SAE Recommended Practice provides general guidelines on the material selection, construction, and qualification of components and wiring systems used to construct nominal 12 VDC and/or 24 VDC electrical wiring systems for heavy-duty vehicles The guidelines are limited to nominal 12 VDC and/or 24 VDC primary wiring systems and includes cable sizes American Wire Gage 20 to AWG 4 on heavy-duty on-highway trucks. The document identifies appropriate operating performances requirements. This document excludes the male-to-female connection of the SAE J560 connectors.
Standard

Identification of Vehicles and Supply Equipment for Conductive AC Charging

2023-12-13
CURRENT
J3068/1_202312
This document is an optional addition to SAE J3068 that adds additional communications (using LIN-CP) between the EV and SE that provide capabilities valuable to commercial fleets. These include the ability of the EV and SE to exchange unique identifiers, to establish which EV is connected to which SE, and to specify requirements for the next trip.
Standard

Wheels - Lateral Impact Test Procedure - Road Vehicles

2023-12-13
CURRENT
J175_202312
The SAE Recommended Practice establishes minimum performance requirements and related uniform laboratory test procedures for evaluating lateral (curb) impact collision resistance of all wheels intended for use on passenger cars and light trucks.
X