Refine Your Search

Topic

Search Results

Book

An Introduction to Aircraft Thermal Management

2020-04-14
Aircraft Thermal Management (ATM)focuses on how to manage heat in an aircraft to meet the temperature requirements for passengers and vehicle. This primarily involves removing heat and protecting equipment, systems, and structure from heat sources that could raise their temperature beyond design limits. Crew and passengers must be neither too hot nor too cold during airplane operations. Thus, maintaining thermal comport is critically important, and not a trivial operation. Written by Mark F.
Book

Gas Turbine Blade Cooling

2018-12-10
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure.
Book

The Use of Electric Batteries for Civil Aircraft Applications

2018-12-10
The Use of Electric Batteries for Civil Aircraft Applications is a comprehensive and focused collection of SAE International technical papers, covering both the past and the present of the efforts to develop batteries that can be specifically installed in commercial aircraft. Recently, major commercial aircraft manufacturers started investigating the possibility of using Li-Ion batteries at roughly the same time that the military launched their first applications. As industry events unfolded, the FAA and committees from RTCA and SAE continued efforts to create meaningful standards for the design, testing, and certification of Li-Ion battery systems for commercial aviation. The first document issued was RTCA DO-311 on Mar. 13, 2008. As the industry continues to develop concepts and designs for the safe utilization of the new Li-Ion battery systems, many are already working on designs for all-electric aircraft, and small two-seat training aircraft are currently flying.
Book

Electric Flight Technology: The Unfolding of a New Future

2018-05-28
The environmental impact of hydrocarbon-burning aircraft is one of the main motivations for the move to electric propulsion in aerospace. Also, cars, buses, and trucks are incorporating electric or hybrid-electric propulsion systems, reducing the pressure on hydrocarbons and lowering the costs of electrical components. The economies of scale necessitated by the automotive industry will help contain costs in the aviation sector as well. The use of electric propulsion in airplanes is not a new phenomenon. However, it is only recently that it has taken off in a concrete manner with a viable commercial future. The Electric Flight Technology: Unfolding of a New Future reviews the history of this field, discusses the key underlying technologies, and describes how the future for these technologies will likely unfold, distinguishing between all-electric (AE) and hybrid-electric (HE) architectures. Written by Dr.
Book

Advances in Electric Propulsion

2017-05-18
Aviation propulsion development continues to rely upon fossil fuels for the vast majority of commercial and military applications. Until these fuels are depleted or abandoned, burning them will continue to jeopardize air quality and provoke increased regulation. With those challenges in mind, research and development of more efficient and electric propulsion systems will expand. Fuel-cell technology is but one example that addresses such emission and resource challenges, and others, including negligible acoustic emissions and the potential to leverage current infrastructure models. For now, these technologies are consigned to smaller aircraft applications, but are expected to mature toward use in larger aircraft. Additionally, measures such as electric/conventional hybrid configurations will ultimately increase efficiencies and knowledge of electric systems while minimizing industrial costs.
Book

Energy Harvesting for Low-Power Autonomous Devices and Systems

2017-01-01
This book is an introductory text describing methods of harvesting electrical energy from mechanical potential and kinetic energy. The book focuses on the methods of transferring mechanical energy to energy conversion transducers of various types, including piezoelectric, electromagnetic, electrostatic, and magnetostrictive transducers. Methods that have been developed for collecting, conditioning, and delivering the generated electrical energy to a load, as well as their potential use as self-powered sensors, are described. The book should be of interest to those who want to know the potentials as well as shortcomings of energy harvesting technology. The book is particularly useful for energy harvesting system designers as it provides a systematic approach to the selection of the proper transduction mechanisms and methods of interfacing with a host system and electrical energy collection and conditioning options.
Book

Power Harvesting via Smart Materials

2017-01-01
This monograph covers the fundamentals, fabrication, testing, and modeling of ambient energy harvesters based on three main streams of energy-harvesting mechanisms: piezoelectrics, ferroelectrics, and pyroelectrics. It addresses their commercial and biomedical applications, as well as the latest research results. Graduate students, scientists, engineers, researchers, and those new to the field will find this book a handy and crucial reference because it provides a comprehensive perspective on the basic concepts and recent developments in this rapidly expanding field.
Book

Successful Prediction of Product Performance

2016-09-12
The ability to successfully predict industrial product performance during service life provides benefits for producers and users. This book addresses methods to improve product quality, reliability, and durability during the product life cycle, along with methods to avoid costs that can negatively impact profitability plans. The methods presented can be applied to reducing risk in the research and design processes and integration with manufacturing methods to successfully predict product performance. This approach incorporates components that are based on simulations in the laboratory. The results are combined with in-field testing to determine degradation parameters. These approaches result in improvements to product quality, performance, safety, profitability, and customer satisfaction.
Book

Aircraft Thermal Management

2016-03-02
This set is comprised of two titles, Aircraft Thermal Management: Systems Architectures and Aircraft Thermal Management: Integrated Energy Systems Analysis both edited by Mark Ahlers.
Book

Aircraft Thermal Management: Systems Architectures

2016-03-02
Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft.
Book

Aircraft Thermal Management: Integrated Energy Systems Analysis

2016-03-02
The simultaneous operation of all systems generating, moving, or removing heat on an aircraft is simulated using integrated analysis which is called Integrated Energy System Analysis (IESA) for this book. Its purpose is to understand, optimize, and validate more efficient system architectures for removing or harvesting the increasing amounts of waste heat generated in commercial and military aircraft. In the commercial aircraft industry IESA is driven by the desire to minimize airplane operating costs associated with increased system weight, power consumption, drag, and lost revenue as cargo space is devoted to expanded cooling systems. In military aircraft thermal IESA is also considered to be a key enabler for the successful implementation of the next generation jet fighter weapons systems and countermeasures. This book contains a selection of papers relevant to aircraft thermal management IESA published by SAE International.
Book

Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously

2016-01-01
Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously describes energy harvesting using a hybrid concentrating photovoltaic (PV) system with simultaneous thermal generation for energy storage. Several designs have been proposed to build a system that takes advantage of the entire solar spectrum through direct electric generation using concentrated light onto photovoltaics while generating thermal energy using wavelengths of light not captured by the PV cell. This title addresses the current technologies and state-of-the-art designs, as well as the methodologies, underlying physics, and engineering implications.
Book

Experimental and Simulation Tools for Thin-Film Solar Cells

2016-01-01
Experimental and Simulation Tools for Thin-Film Solar Cells describes the methods used for the optical characterization and design of thin-film solar cells. A description of the cells under study (CdTe, CIGS, CZTS, Perovskite, and organic) is given, followed by coupling experimental and simulation studies in order to improve solar cell performances. A detailed discussion on specific optical tools (ellipsometry, photoluminescence and photoreflectance) is included, and a link between materials and measurements is made by studying the relevant physical principles. Finally, a numerical model is provided that can be used to design the structure of a thin-film solar cell.
Book

Electric Motors for Hybrid and Pure Electric Vehicles 2015-2025: Land, Water, Air

2014-11-01
The electric vehicle business will approach a massive $500 billion in 2025 with the traction motors segment capturing over $25 billion. Traction motors propelling land, water and air vehicles along can consist of one inboard motor or - an increasing trend - more than one near the wheels, in the wheels, in the transmission or ganged to get extra power. Complex trends in this industry are explained with this updated report, and future winning suppliers are identified alongside market forecasts. The information is especially important as hybrid vehicles may have the electric motor near the conventional engine or its exhaust, and this may mean they need to tolerate temperatures never before encountered in pure electric vehicles. Motors for highly price-sensitive markets such as electric bikes, scooters, e-rickshaws and micro EVs avoid the price hikes of neodymium and other rare earths in the magnets.
Book

Range Extenders for Electric Vehicles Land, Water & Air 2015-2025

2014-10-01
Half the electric vehicle market value lies in larger road vehicles, notably cars, and here the legal restrictions are weaker or non-existent, and range anxiety compels most people to buy hybrids if they go electric at all. Over eight million hybrid cars will be made in 2025, each with a range extender, the additional power source that distinguishes them from pure electric cars. Add to that significant money spent on the same devices in buses, military vehicles, boats and so on and a major new market emerges. Whereas today's range extenders usually consist of little more than off- the- shelf internal combustion engines, these are rapidly being replaced by second- generation range extenders consisting of piston engines designed from scratch for fairly constant load. However, a more radical departure is the third- generation micro turbines and fuel cells that work at constant load.
Book

Integrated Vehicle Health Management: Essential Reading

2013-09-25
Integrated Vehicle Health Management (IVHM) is a relatively new subject, with its roots back in the space sector of the early 1990s. Although many of the papers written around that time did not refer to it as IVHM, the fundamental principles of considering an integrated end-to-end system to monitor the overall health of the asset were clearly visible. As the subject of Integrated Vehicle Health Management (IVHM) and its associated technologies have grown up, businesses are making the transformation from selling a product to selling a service. This can be viewed as a positive disruption, as a relatively small technology breakthrough is being brought to market for a large business benefit. The sequence “sense—acquire—transfer—analyze—act “ feeds the information (processed data) on the asset’s health into the Operations or Management control center.
Book

Proceedings for the Joint Conference: MFPT 2013 and ISA's 59th International Instrumentation Symposium

2013-05-13
The result of a combined effort between the Society for Machinery Failure Prevention Technology (MFPT) and the International Society of Automation (ISA), which held their conferences together in May, 2013, the proceedings are now are available in print format. Focusing on the theme of Sensors and Systems for Reliability, Safety and Affordability, the Joint Conference MFPT 2013 and ISA’s 59th International Instrumentation Symposium reflected the importance of sensing and condition management systems in lowering sustainment costs. The proceedings contain 33 technical papers chosen out of the 120 presented during the various sessions.
X