Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Structural Loads for Crew Escape System (CES) of Gaganyaan Launch Vehicle During Abort

2024-06-01
2024-26-0453
Abstract : In any human space flight program, safety of the crew is of utmost priority. In case of exigency during atmospheric flight, the crew is safely and quickly rescued from the launch vehicle using Crew escape system. Crew escape system is a crucial part of the Human Space flight vehicle which carries the crew module away from the ascending launch vehicle by firing its rocket motors (Pitch Motor (PM), Low altitude Escape Motor (LEM) and High altitude Escape Motor (HEM)). The structural loads experienced by the crew escape system during the mission abort are severe as the propulsive forces, aerodynamic forces and inertial forces on the vehicle are significantly high. Since the mission abort can occur at anytime during the ascent phase of the launch vehicle, trajectory profiles are generated for abort at every one second interval of ascent flight time considering several combinations of dispersions on various propulsive parameters of abort motors and aero parameters.
Technical Paper

BIST Based Method for SEE Testing of Vikram1601 Processor

2024-06-01
2024-26-0433
A novel method for Single Event Effect (SEE) Radiation Testing using Built-In Self-Test (BIST) feature of indigenously developed Vikram1601 processor is discussed. The novelty is that the usage of BIST avoids need of exhaustive test vectors to ensure test coverage of all the internal registers and physical memory to store them. So processor is the only element vulnerable to radiation damage during testing. The test design was carried out at VSSC, Trivandrum and the testing was carried out at IUAC, Delhi. In the first part, a brief introduction, need and methods of radiation testing of electronics especially SEE of radiation on Silicon based devices, different radiation effects, radiation damage mechanisms and testing methods are described. A brief introduction to Vikram1601 processor, the instruction – TST, used as BIST and testing scheme implementation using TST for studying the SEE is explained.
Technical Paper

Effect of Fatigue Loads on Behavior of 2024-T351 Aluminum Conduits for Aircraft Hydraulic Applications

2024-06-01
2024-26-0431
Abstract: Hydraulic systems in aircrafts largely comprise of metallic components with high strength to weight ratios which comprise of 2024 Aluminum and Titanium Ti-6AL-4V. The selection of material is based on low and high pressure applications respectively. For aircraft fluid conveyance products, hydraulic conduits are fabricated by axisymmetric turning to support flow conditions. The hydraulic conduits further carries groves within for placement of elastomeric sealing components. This article presents a systematic study carried out on common loads experienced by fluid carrying conduits and the failure modes induced. The critical failure locations on fluid carrying conduits of 2024-T351 Aluminum was identified, and the Scanning Electron Microscope (SEM) analysis was carried out to identify the characteristic footprints of failure surfaces and crack initiation. Through this analysis, a load to failure mode correlation is established.
Event

Exhibit/Sponsor - Evolving to MedDev 2021

2024-05-13
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies
Event

Program - Evolving to MedDev 2021

2024-05-13
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies
Event

Attend - Innovations in Mobility: Aerospace Digital Summit

2024-05-13
Innovations in Mobility: Aerospace Digital Summitaerospace mobility leaders convene leverage cutting-edge technology, design, develop safety measures, integrate current regulations, suggest future policies, expand markets, diversify revenue streams.
Standard

ARP4754B Clarification Notice

2024-05-10
WIP
AIR4757
ARP4754B Clarification Notice to address typographical errors and clarify portions of the document to facilitate usage of the newly released ARP4754B.
Standard

Nuts, Self-Locking, UNS N07001 730 °C, 1100 MPa, and 1210 MPa Procurement Specification for, Metric

2024-05-09
MA1943C
This procurement specification covers aircraft quality self-locking nuts for wrenching (hex, spline) and anchor (plate, gang channel, shank) types of nuts made from a corrosion and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001. Tension height nuts having overall length of threaded portion not less than 1.2 times the nominal thread diameter have 1210 MPa minimum tensile strength at room temperature. Shear height nuts having shorter threaded portion have 1100 MPa minimum tensile strength at room temperature. Maximum test temperature of parts is 730 °C.
Standard

Emergency Evacuation Slides, Ramps, Ramp/Slides, and Slide/Rafts

2024-05-01
AS8994
This AS provides the minimum performance requirements for the following types of inflatable emergency evacuation devices (hereinafter referred to as device[s]): 1 Type I - Inflatable Slide: A device suitable for assisting occupants in descending from a floor-level airplane exit or from an airplane wing to the ground. A Type I off-wing slide is a device that does not include a ramp. 2 Type II - Inflatable Slide/Raft: A device suitable for assisting occupants in descending from a floor-level airplane exit or an airplane wing to the ground that is also designed to be used as a life raft. A Type II off-wing slide/raft is a device that does not include a ramp. 3 Type III - Inflatable Exit Ramp: A device suitable for assisting occupants in descending from certain overwing exits to an airplane wing. 4 Type IV - Inflatable Ramp/Slide: A device suitable for assisting occupants from an overwing exit or airplane wing to the ground.
X