Refine Your Search

Topic

null

Affiliation

Search Results

Technical Paper

Experimental Study on Diesel Spray Combustion and Wall Heat Transfer with Multiple Fuel Injection Strategies - Results of Rapid Compression and Expansion Machine Experiment

2023-10-24
2023-01-1843
The rapid compression expansion machine (RCEM) was used to investigate the temporal variations of the spray flame and wall heat flux in the diesel engine combustion process by using 120 MPa and 180 MPa common rail pressure. A stepped cavity was applied to investigate spray and flame behavior under the pilot, pre and main multiple injection strategy. Wall heat flux sensors were installed in the piston cavity and the cylinder side. The injector has 3 holes with the neighboring angle in the left direction and another 3 holes in the right direction to simulate the spray interaction in the 10-hole injector combustion system in the actual diesel engine. The spray and flame behavior were taken by a high-speed video camera with direct photograph. A two-color analysis was applied to investigate gas temperature and KL factor distribution. The effect of locations and common rail pressure on heat transfer was investigated.
Technical Paper

Effect of Cross-Flow Velocity on Fuel Adhesion of Flat-Wall Impinging Spray under Triple Stage Split Injection

2023-09-29
2023-32-0013
The high injection pressure and small cylinder volume of direct injection spark ignition (DISI) engines can result in flat-wall wetness on the surface of the piston, increasing fuel consumption and pollutant emissions. The characteristics of microscopic fuel adhesion are observed using refractive index matching (RIM). Fuel adhesion characteristics after wall impingement are evaluated with various cross-flow velocities under triple stage injection conditions. The results indicate that cross-flow has a beneficial effect on the diffusion of fuel spray. Average fuel adhesion thickness decreases with an increase in cross-flow velocities. Furthermore, cross-flow promotes the evaporation of fuel adhesion, which leads to a reduction in the fuel adhesion mass/mass ratio. The improvement of injection strategy has guidance on low-carbon future.
Technical Paper

Preheated Liquid Fuel Injection Concept for Lean Pre-chamber Combustion

2023-04-11
2023-01-0259
The pre-chamber combustion (PCC) concept is a proven lean or diluted combustion technique for internal combustion engines with benefits in engine efficiency and reduced NOx emissions. The engine lean operation limit can be extended by supplying auxiliary fuel into the pre-chamber and thereby, achieving mixture stratification inside the pre-chamber over the main chamber. Introducing liquid fuels into the pre-chambers is challenging owing to the small form factor of the pre-chamber. With a conventional injector, the fuel penetrates in liquid form and impinges on the pre-chamber walls, which leads to increased unburned hydrocarbon emissions from the pre-chamber. In this study, a prototype liquid fuel injector is introduced which preheats the fuel within a heated chamber fitted with an electrical heating element before injecting an effervescently atomized spray into the pre-chamber.
Technical Paper

Behaviors of Spray Droplets with and without Flat Wall Impingement

2021-09-05
2021-24-0058
Fuel spray impingement on the combustion chamber wall cannot be avoid in direct injection gasoline engines, resulting in insufficient combustion and unburned hydrocarbon/soot emissions from the engines. And the microscopic characteristics of the impinging spray have a close relation with the fuel film formation, which has a direct effect on the engine performance and emissions. Therefore, figuring out the droplet behaviors of the impinging spray is significantly important for improving the engine performance and reducing emissions. However, the microscopic characteristics of the impinging spray have not been deeply understood and the differences between the impinging and free spray are seldom mentioned in previous study. Therefore, particle image analysis (PIA) technique was applied to detect the microscopic characteristics at the capture location in order to track the droplet behaviors of the spray tip during the propagation process.
Technical Paper

Stochastic Set-Point Optimization for In-Cycle Closed-Loop Combustion Control Operation

2021-04-06
2021-01-0531
The constrained indicated efficiency optimization of the set-point reference for in-cycle closed-loop combustion regulators is investigated in this article. Closed-loop combustion control is able to reduce the stochastic cyclic variations of the combustion by the adjustment of multiple-injections, a pilot and main injection in this work. The set-point is determined by the demand on engine load, burned pilot mass reference and combustion timing. Two strategies were investigated, the regulation of the start of combustion (SOC) and the center of combustion (CA50). The novel approach taken in this investigation consists of including the effect of the controlled variables on the combustion dispersion, instead of using mean-value models, and solve the stochastic optimization problem. A stochastic heat release model is developed for simulation and calibrated with extensive data from a Scania D13 six-cylinder engine. A Monte Carlo approach is taken for the simulations.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Technical Paper

Control of Ignition Timing and Combustion Phase by Means of Injection Strategy for Jet-Controlled Compression Ignition Mode in a Light Duty Diesel Engine

2020-04-14
2020-01-0555
Controllability of ignition timing and combustion phase by means of dual-fuel direct injection strategy in jet-controlled compression ignition mode were investigated in a light-duty prototype diesel engine. Blended fuel with lower reactivity was delivered in the early period of compression stroke to form the premixed charge, while diesel fuel which has higher reactivity was injected near TDC to trigger the ignition. The effects of several important injection parameters including pre-injection timing, jet-injection timing, pre- injection pressure and ratio of pre-injection in the total heat value of injected fuel were discussed. Numerical Simulation by using CFD software was also conducted under similar operating conditions. The experimental results indicate that the jet-injection timing shows robust controllability on the start of combustion under all the engine load conditions.
Technical Paper

An Analysis of Diesel Spray Characteristics with Small Injection Amount under Similarity Law Condition

2020-01-24
2019-32-0590
In this paper, the Diesel spray characteristics were studied by HS video camera and the Laser Absorbing Scattering (LAS) technique means of the combustion deterioration problem caused by the engine downsizing based on the geometrical similarity was investigated. In the experiments, three Diesel injectors with the hole diameters of 0.07mm, 0.101mm and 0.133mm were used. The injection pressures of the injectors with three different diameters were 45MPa, 93MPa and 160MPa, respectively. The Diffused Background Illumination (DBI) method was employed for the nonevaporating spray experiment to obtain spray tip penetration and spray angle at room temperature. The LAS technique was employed for the evaporating spray experiment to obtain the equivalence ratio distributions, evaporation rate, and vapor phase tip penetration. Moreover, the Wakuri Momentum Theory was applied to analyze the data obtained by both the non-evaporating and the evaporating spray experiments.
Technical Paper

Regulated Emissions and Detailed Particle Characterisation for Diesel and RME Biodiesel Fuel Combustion with Varying EGR in a Heavy-Duty Engine

2019-12-19
2019-01-2291
This study investigates particulate matter (PM) and regulated emissions from renewable rapeseed oil methyl ester (RME) biodiesel in pure and blended forms and contrasts that to conventional diesel fuel. Environmental and health concerns are the major motivation for combustion engines research, especially finding sustainable alternatives to fossil fuels and reducing diesel PM emissions. Fatty acid methyl esters (FAME), including RME, are renewable fuels commonly used from low level blends with diesel to full substitution. They strongly reduce the net carbon dioxide emissions. It is largely unknown how the emissions and characteristics of PM get altered by the combined effect of adding biodiesel to diesel and implementing modern engine concepts that reduce nitrogen oxides (NOx) emissions by exhaust gas recirculation (EGR).
Technical Paper

Effects of Nozzle Hole Diameter and Injection Pressure on Fuel Adhesion of Flat-Wall Impinging Spray

2019-12-19
2019-01-2246
In direct injection spark ignition (DISI) engine, it is difficult to avoid the spray impingement of fuel on the cylinder wall and piston head, which is a possible source of hydrocarbons and soot emission. The injector nozzle geometry and injection pressure are essential components for the spray atomization and mixture formation. For better understanding the effects of injector hole diameters and injection pressure, the fuel spray and adhesion on a flat wall by different mini-sac injectors with a single hole was examined in this study. A flat-wall made of quartz glass was used as the impingement plate. Refractive Index Matching (RIM) method was applied to measure the thickness of fuel adhesion on the wall. All the cases performed in constant high-pressure chamber were under high temperature condition considering the real gasoline engine condition. Time-resolved behaviors of the fuel adhesion as well as adhesion mass, area and thickness were discussed.
Technical Paper

Effects of ratio and dwell of split injection on fuel spray and mixture formation process under evaporating, non-reacting condition

2019-12-19
2019-01-2323
The effects of split injections of a diesel spray was evaluated in a constant volume chamber under evaporating, non-reacting condition. Laser absorption scattering (LAS) technique was utilized for the mixture concentration measurement, using a diesel surrogate fuel consists of n-tridecane and 2.5% of 1-methylnaphthalene in volume basis. While fixing the total injected fuel mass of 5.0 mg/hole, the effects of split ratio in mass basis and the dwell time (or injection interval) were investigated. Among the split ratios conducted in the current study (3,7, 5:5 and 7:3), the split ratio of 7:3 was the optimum for lean mixture formation regarding the overall distribution of the equivalence ratio at end-of-injection (EOI) timing. The air entrainment wave at the EOI timing of the first injection allowed the fuel at the vicinity of the nozzle to become leaner at a faster rate.
Technical Paper

Effects of Droplet Behaviors on Fuel Adhesion of Flat Wall Impinging Spray Injected by a DISI Injector

2019-09-09
2019-24-0034
Owing to the short impingement distance and high injection pressure, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. For better understanding of the mechanisms behind the spray-wall impingement, the fuel spray and adhesion on a flat wall using a mini-sac injector with a single-hole was examined. The microscopic characteristics of impinging spray were investigated through Particle Image Analysis (PIA). The droplet size and velocity were compared before impingement. The adhered fuel on the wall was measured by Refractive Index Matching (RIM). The fuel adhesion mass and area were discussed. Moreover, the relationships between droplets behaviors and fuel adhesion on the wall were discussed.
Technical Paper

Learning Based Model Predictive Control of Combustion Timing in Multi-Cylinder Partially Premixed Combustion Engine

2019-09-09
2019-24-0016
Partially Premixed Combustion (PPC) has shown to be a promising advanced combustion mode for future engines in terms of efficiency and emission levels. The combustion timing should be suitably phased to realize high efficiency. However, a simple constant model based predictive controller is not sufficient for controlling the combustion during transient operation. This article proposed one learning based model predictive control (LBMPC) approach to achieve controllability and feasibility. A learning model was developed to capture combustion variation. Since PPC engines could have unacceptably high pressure-rise rates at different operation points, triple injection is applied as a solvent, with the use of two pilot fuel injections. The LBMPC controller utilizes the main injection timing to manage the combustion timing. The cylinder pressure is used as the combustion feedback. The method is validated in a multi-cylinder heavy-duty PPC engine for transient control.
Technical Paper

Measurement of Gasoline Exhaust Particulate Matter Emissions with a Wide-Range EGR in a Heavy-Duty Diesel Engine

2019-04-02
2019-01-0761
A large number of measurement techniques have been developed or adapted from other fields to measure various parameters of engine particulates. With the strict limits given by regulations on pollutant emissions, many advanced combustion strategies have been developed towards cleaner combustion. Exhaust gas recirculation (EGR) is widely applied to suppress nitrogen oxide (NOx) and reduce soot emissions. On the other hand, gasoline starts to be utilized in compression ignition engines due to great potential in soot reduction and high engine efficiency. New engine trends raise the need for good sensitivity and suitable accuracy of the PM measurement techniques to detect particulates with smaller size and low particulate mass emissions. In this work, we present a comparison between different measurement techniques for particulate matter (PM) emissions in a compression ignition engine running on gasoline fuel. A wide-range of EGR was used with lambda varied from 3 down to 1.
Technical Paper

Optical Investigation on the Combustion Process Differences between Double-Pilot and Closely-Coupled Triple-Pilot Injection Strategies in a LD Diesel Engine

2019-01-15
2019-01-0022
The combustion processes of three injection strategies in a light-duty (LD) diesel engine at a medium load point are captured with a high speed video camera. A double-pilot/main/single-post injection strategy representative of a LD Euro 6 calibration is considered as the reference. There is a modest temporal spacing (dwell) after the first pilot (P1) and second pilot (P2). A second strategy, “A,” adds a third pilot (P3). The dwell after both P2 and P3 are several times shorter than in the reference strategy. A third strategy, “B,” further reduces all dwells. Each injection has its own associated local peak in the heat release rate (HRR) following some ignition delay. Between these peaks lie local minima, or dips. In all three cases, the fuel from P1 combusts as a propagating premixed flame. For all strategies, the ignition of P2 primarily occurs at its interface with the existing combustion regions.
Journal Article

NOx-Conversion Comparison of a SCR-Catalyst Using a Novel Biomimetic Effervescent Injector on a Heavy-Duty Engine

2019-01-15
2019-01-0047
NOx pollution from diesel engines has been stated as causing over 10 000 pre-mature deaths annually and predictions are showing that this level will increase [1]. In order to decrease this growing global problem, exhaust after-treatment systems for diesel engines have to be improved, this is especially so for vehicles carrying freight as their use of diesel engines is expected to carry on into the future [2]. The most common way to reduce diesel engine NOx out emissions is to use SCR. SCR operates by injecting aqueous Urea solution, 32.5% by volume (AUS-32), that evaporates prior the catalytic surface of the SCR-catalyst. Due to a catalytic reaction within the catalyst, NOx is converted nominally into Nitrogen and Water. Currently, the evaporative process is enhanced by aggressive mixer plates and long flow paths.
Technical Paper

Effect of Piston Geometry on Stratification Formation in the Transition from HCCI to PPC

2018-09-10
2018-01-1800
Partially premixed combustion (PPC) is an advanced combustion strategy that has been proposed to provide higher efficiency and lower emissions than conventional compression ignition, as well as greater controllability than homogeneous charge compression ignition (HCCI). Stratification of the fuel-air mixture is the key to achieving these benefits. The injection strategy, injector-piston geometry design and fuel properties are factors commonly manipulated to adjust the stratification level. In the authors’ previous research, the effects of injection strategy and fuel properties on the stratification formation process were investigated. The results revealed that, for a direct-injection compression ignition engine, by sweeping the injection timing from −180° aTDC (after top dead center) to −20° aTDC, the sweep could be divided into three different regimes: an HCCI regime, a Transition regime and a PPC regime, based on the changing of mixture stratification conditions.
Technical Paper

Combined Low and High Pressure EGR for Higher Brake Efficiency with Partially Premixed Combustion

2017-10-08
2017-01-2267
The concept of Partially Premixed Combustion (PPC) in internal combustion engines has shown to yield high gross indicated efficiencies, but at the expense of gas exchange efficiencies. Most of the experimental research on partially premixed combustion has been conducted on compression ignition engines designed to operate on diesel fuel and relatively high exhaust temperatures. The partially premixed combustion concept on the other hand relies on dilution with high exhaust gas recirculation (EGR) rates to slow down the combustion which results in low exhaust temperatures, but also high mass flows over cylinder, valves, ports and manifolds. A careful design of the gas exchange system, EGR arrangement and heat exchangers is therefore of utter importance. Experiments were performed on a heavy-duty, compression ignition engine using a fuel consisting of 80 volume % 95 RON service station gasoline and 20 volume % n-heptane.
Technical Paper

Effects of Hole Diameter and Injection Pressure on Fuel Spray and Its Evaporation Characteristics of Multi-Hole Nozzle for Diesel Engine

2017-10-08
2017-01-2305
The performance of a diesel engine largely depends on the spray behavior and mixture formation. Nozzle configurations and operating conditions are important factors that influence spray development. Using numerical and experimental methods, this study focused on the spray development of multi-hole nozzles under non-evaporating and evaporating conditions to compare the influence of nozzle hole diameter and injection pressure on spray characteristics. High-speed video observation was employed to study the properties of spray development under the non-evaporating condition, while the Laser Absorption Scattering technique was used in the observation and quantitative analysis of evaporating spray characteristics in the evaporating condition. In addition, computational fluid dynamics study results published previously [1] were correlated with the current experimental results to provide more detailed explanations about the mechanism of the characteristics of spray behavior.
Technical Paper

Humid Air Motor: A Novel Concept to Decrease the Emissions Using the Exhaust Heat

2017-10-08
2017-01-2369
Humid air motor (HAM) is an engine operated with humidified inlet charge. System simulations study on HAM showed the waste heat recovery potential over a conventional system. An HAM setup was constructed, to comprehend the potential benefits in real-time, the HAM setup was built around a 13-litre six cylinder Volvo diesel engine. The HAM engine process is explained in detail in this paper. Emission analysis is also performed for all three modes of operation. The experiments were carried out at part load operating point of the engine to understand the effects of humidified charge on combustion, efficiency, and emissions. Experiments were conducted without EGR, with EGR, and with humidified inlet charge. These three modes of operation provided the potential benefits of each system. Exhaust heat was used for partial humidification process. Results show that HAM operation, without compromising on efficiency, reduces NOx and soot significantly over the engine operated without EGR.
X