Refine Your Search

Topic

Search Results

Technical Paper

Energy and Pollutants analysis of a Series HEV Equipped with a Hydrogen-Fueled SI Engine

2023-08-28
2023-24-0132
The growing concern about Greenhouse Gas (GHG) emissions led institutions to further reduce the limits on vehicle-related CO2 emissions. Therefore, car manufacturers are developing vehicles with low environmental impact, like Hybrid-Electric Vehicles (HEVs), which in the series architecture employ an Internal Combustion Engine (ICE) coupled with an electric generator for battery recharging, thus extending the range of a Battery Electric Vehicle (BEV). For this kind of application, small four-stroke Spark Ignition (SI) engines are preferred, as they are a proven and reliable solution to increase the driving range with very low environmental impact. In series hybrid-electric powertrains, the ICE is decoupled from the drive wheels, then it can operate in a steady-state high-efficiency working point, regardless of the power required by the mission profile. The benefits of lean combustion can be exploited to increase efficiency and reduce CO2 and NOx emissions.
Technical Paper

A Methodology for the Experimental Validation at the Engine Test Bed of Fuel Consumption and NOx Emissions Reduction in a HEV

2022-09-16
2022-24-0006
Due to the greater need to reduce exhaust emissions of harmful gases (GHG, NOx, PM, etc.), to promote the decarbonisation process and to overcome the drawbacks of electric vehicles (low range, high cost, impact of electricity production on CO2 emissions…), the hybrid-electric vehicles are still considered as the more feasible path through sustainable mobility. However, one of the main tasks to be accomplished to get maximum benefit from hybrid-electric powertrain is the management of the energy flows between the different power sources, namely internal combustion engine, electric machine(s) and battery pack. In this paper a methodology for the experimental testing of HEVs energy management strategies at the engine test bed is presented. The experimental set-up consists in an eddy-current dyno and a light-duty common-rail Diesel engine.
Technical Paper

Performance Assessment of Gasoline PPC in a Light-Duty CI Engine

2022-03-29
2022-01-0456
In the past years, stringent emission regulations for Internal Combustion (IC) engines produced a large amount of research aimed at the development of innovative combustion methodologies suitable to simultaneously reduce fuel consumption and engine-out emissions. Previous research demonstrates that the goal can be obtained through the so-called Low Temperature Combustions (LTC), which combine the benefits of compression-ignited engines, such as high compression ratio and unthrottled lean operation, with a properly premixed air-fuel mixture, usually obtained injecting gasoline-like fuels with high volatility and longer ignition delay. Gasoline Partially Premixed Combustion (PPC) is a promising LTC technique, mainly characterized by the high-pressure direct-injection of gasoline and the spontaneous ignition of the premixed air-fuel mixture through compression, which showed a good potential for the simultaneous reduction of fuel consumption and emissions in CI engines.
Technical Paper

Development and Validation of a Virtual Sensor for Estimating the Maximum in-Cylinder Pressure of SI and GCI Engines

2021-09-05
2021-24-0026
This work focuses on the development and validation of a data-driven model capable of predicting the maximum in-cylinder pressure during the operation of an internal combustion engine, with the least possible computational effort. The model is based on two parameters, one that represents engine load and another one the combustion phase. Experimental data from four different gasoline engines, two turbocharged Gasoline Direct Injection Spark Ignition, a Naturally Aspirated SI and a Gasoline Compression Ignition engine, was used to calibrate and validate the model. Some of these engines were equipped with technologies such as Low-Pressure Exhaust Gas Recirculation and Water Injection or a compression ignition type of combustion in the case of the GCI engine. A vast amount of engine points were explored in order to cover as much as possible of the operating range when considering automotive applications and thus confirming the broad validity of the model.
Technical Paper

Experimental and Numerical Investigation of a Lean SI Engine To Be Operated as Range Extender for Hybrid Powertrains

2021-09-05
2021-24-0005
In the last few years, concern about the environmental impact of vehicles has increased, considering the growth of the dangerous effects on health of noxious exhaust emissions. For this reason, car manufacturers are moving towards more efficient combustion systems for Spark Ignition (SI) engines, aiming to comply with the increasingly stringent regulation imposed by EU and other legislators. Engine operation with very lean air/fuel ratios has demonstrated to be a viable solution to this problem. Stable ultra-lean combustion can be obtained with a Pre-Chamber (PC) ignition system, installed in place of the conventional spark plug. The efficiency of this configuration in terms of performance and emissions is due to its combustion process, that starts in the PC and propagates in the main chamber in the form of multiple hot turbulent jets.
Technical Paper

Analysis of the Effects of Injection Pressure Variation in Gasoline Partially Premixed Combustion

2021-04-06
2021-01-0517
Compression-ignited engines are still considered the most efficient and reliable technology for automotive applications. However, current and future emission regulations, which severely limit the production of NOx, particulate matter and CO2, hinder the use of diesel-like fuels. As a matter of fact, the spontaneous ignition of directly-injected Diesel leads to a combustion process that is heterogeneous by nature, therefore characterized by the simultaneous production of particulate matter and NOx. In this scenario, several innovative combustion techniques have been investigated over the past years, the goal being to benefit from the high thermal efficiency of compression-ignited engines, which results primarily from high Compression Ratio and lean and unthrottled operation, while simultaneously mitigating the amount of pollutant emissions.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Technical Paper

Injection Pattern Investigation for Gasoline Partially Premixed Combustion Analysis

2019-09-09
2019-24-0112
Nowadays, compression-ignited engines are considered the most efficient and reliable technology for automotive applications. However, mainly due to the current emission regulations, that require increasingly stringent reductions of NOx and particulate matter, the use of diesel-like fuels is becoming a critical issue. For this reason, a large amount of research and experimentation is being carried out to investigate innovative combustion techniques suitable to simultaneously mitigate the production of NOx and soot, while improving engine efficiency. In this scenario, the combined use of compression-ignited engines and gasoline-like fuels proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. The presented study analyzes the combustion process produced by the direct injection of small amounts of gasoline in a compression-ignited light-duty engine.
Technical Paper

Development and Experimental Validation of a Control Oriented Model of a Catalytic DPF

2019-04-02
2019-01-0985
1 The wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to meet the particulate emissions regulations for automotive engines. Today’s technology shows the best balance between filtration efficiency and back-pressure in the engine exhaust pipe. During the accumulation phase the pressure drop across the filter increases, thus requiring periodic regeneration of the DPF through after and post fuel injection strategies. This paper deals with the development of a control oriented model of a catalytic silicon carbide (SiC) wall flow DPFs with CuFe2O4 loading for automotive Diesel engines. The model is intended to be used for the real-time management of the regeneration process, depending on back-pressure and thermal state.
Technical Paper

Experimental Testing of a Low Temperature Regenerating Catalytic DPF at the Exhaust of a Light-Duty Diesel Engine

2018-04-03
2018-01-0351
The wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to meet the particulate emission limits imposed by government regulations. Today’s technology shows the best balance between filtration efficiency and back-pressure in the engine exhaust pipe. Conventional filters consist in alternately plugged parallel square channels, so that the exhaust gases flow through the porous inner walls leading to particles trapping. During the accumulation phase the pressure drop across the filter increases, thus requiring periodic regeneration of the DPF through after and post fuel injection strategies. This paper deals with the experimental testing of a catalytic silicon carbide (SiC) wall flow DPFs with CuFe2O4 loading. The filter was built following an optimized procedure based on a preliminary controlled chemical erosion of the SiC porous structure.
Technical Paper

Development and Experimental Validation of a Control Oriented Model of SCR for Automotive Application

2018-04-03
2018-01-1263
1 The Selective Catalytic reduction (SCR) using urea as reducing agent is currently regarded as the most promising after-treatment technology in order to comply with strict RDE targets for NOX and particulate in Diesel application. Model-based control strategies are promising to satisfy the demands of high NOX conversion efficiency and low tailpipe ammonia slip. This paper deals with the development of a control oriented model of a Cu-zeolite urea-SCR system for automotive Diesel engines. The model is intended to be used for the real-time urea-SCR management, depending on engine NOX emissions and ammonia storage. In order to ensure suitable computational demand for the on-board implementation, a reduced order one-state model of ammonia storage has been derived from a quasi-dimensional four-state model of the urea-SCR plant.
Journal Article

Injection Pattern Design for Real Time Control of Diesel Engine Acoustic Emission

2017-03-28
2017-01-0596
Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
Technical Paper

Engine Acoustic Emission Used as a Control Input: Applications to Diesel Engines

2016-04-05
2016-01-0613
The need for strategies that allow managing combustion in an adaptive way has recently widely increased. Especially Diesel engines aimed for clean combustion require a precise control of the combustion outputs. Acoustic emission of internal combustion engines contains a lot of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. Combustion noise in particular can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy. This work discusses the correlations existing between in cylinder combustion and the acoustic emission radiated by the engine and presents a possible approach to use this signal in the engine management system for control purposes.
Technical Paper

Remote Combustion Sensing Methodology for PCCI and Dual-Fuel Combustion Control

2015-09-06
2015-24-2420
The increasing request for pollutant emissions reduction spawned a great deal of research in the field of innovative combustion methodologies, that allow obtaining a significant reduction both in particulate matter and NOx emissions. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Prior research has demonstrated that a closed-loop combustion control strategy can be based on the real-time analysis of in-cylinder pressure trace, that provides important information about the combustion process, such as Start (SOC) and Center of combustion (CA50), pressure peak location and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost.
Technical Paper

Enhanced Multi-Zone Model for Medium Pressure Injection Spray and Fuel-Wall Impingement in Light-Duty Diesel Engines

2015-09-06
2015-24-2398
Nowadays the high competition reached by the automotive market forces Original Equipment Manufacturers (OEMs) towards innovative solutions. Strict emission standards and fuel economy targets make the work hard to be accomplished. Therefore modern engines feature complex architecture and embed new devices for Exhaust Gas Recirculation (EGR), turbocharging (e.g. multi-stage compressors), gas after-treatment (e.g. the Selective Catalyst Reduction (SCR)) and fuel injection (either high or low pressure). In this context the Engine Management System (EMS) plays a fundamental role to optimize engine operation. The paper deals with fuel spray and combustion simulation by a multi-zone phenomenological model aimed at the steady-state optimal tuning of the injection pattern.
Technical Paper

Estimation of the Engine Thermal State by in-Cylinder Pressure Measurement in Automotive Diesel Engines

2015-04-14
2015-01-1623
International regulations continuously restrict the standards for the exhaust emissions from automotive engines. In order to comply with these requirements, innovative control and diagnosis systems are needed. In this scenario the application of methodologies based on the in-cylinder pressure measurement finds widespread applications. Indeed, almost all engine thermodynamic variables useful for either control or diagnosis can be derived from the in-cylinder pressure. Apart for improving the control accuracy, the availability of the in-cylinder pressure signal might also allow reducing the number of existing sensors on-board, thus lowering the equipment costs and the engine wiring complexity. The paper focuses on the detection of the engine thermal state, which is fundamental to achieve suitable control of engine combustion and after-treatment devices.
Technical Paper

A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars

2014-04-01
2014-01-1650
In the last years the automotive industry has been involved in the development and implementation of CO2 reducing concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, waste heat recovery technologies. These latter include ThermoElectric Generator (TEG), Rankine cycle and Electric Turbo Compound (ETC) that have been practically implemented on few heavy-duty application but have not been proved yet as effective and affordable solutions for the automotive industry. The paper deals with the analysis of opportunities and challenges of the Electric Turbo Compound for automotive light-duty engines. In the ETC concept the turbine-compressor shaft is connected to an electric machine, which can work either as generator or motor. In the former case the power can satisfy the vehicle electrical demand to drive the auxiliaries or stored in the batteries.
Technical Paper

Fuel Economy Optimization of Euro 6 Compliant Light Commercial Vehicles Equipped with SCR

2014-04-01
2014-01-1356
The Selective Catalytic Reduction (SCR) system, installed on the exhaust line, is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for Euro 6 compliancy for light and medium duty trucks and bigger passenger cars. Moreover, new more stringent emission regulations and homologation cycles are being proposed for Euro 6c stage and they are scheduled to be applied by the end of 2017. In this context, the interest for SCR technology and its application on light-duty trucks is growing, with a special focus on its potential benefit in term of fuel consumption reduction, thanks to combustion optimization. Nevertheless, the need to warm up the exhaust gas line, to meet the required NOx conversion efficiency, remains an issue for such kind of applications.
Technical Paper

A Methodology to Enhance Design and On-Board Application of Neural Network Models for Virtual Sensing of Nox Emissions in Automotive Diesel Engines

2013-09-08
2013-24-0138
The paper describes suited methodologies for developing Recurrent Neural Networks (RNN) aimed at estimating NOx emissions at the exhaust of automotive Diesel engines. The proposed methodologies particularly aim at meeting the conflicting needs of feasible on-board implementation of advanced virtual sensors, such as neural network, and satisfactory prediction accuracy. Suited identification procedures and experimental tests were developed to improve RNN precision and generalization in predicting engine NOx emissions during transient operation. NOx measurements were accomplished by a fast response analyzer on a production automotive Diesel engine at the test bench. Proper post-processing of available experiments was performed to provide the identification procedure with the most exhaustive information content. The comparison between experimental results and predicted NOx values on several engine transients, exhibits high level of accuracy.
X