Refine Your Search

Topic

Search Results

Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Technical Paper

Experimental and 1D Numerical Investigations on the Exhaust Emissions of a Small Spark Ignition Engine Considering the Cylinder-by-Cylinder Variability

2020-04-14
2020-01-0578
This paper reports a numerical and experimental analysis on a twin-cylinder turbocharged Spark Ignition engine carried out to investigate the cylinder-to-cylinder variability in terms of performance, combustion evolution and exhaust emissions. The engine was tested at 3000 rpm in 20 different steady-state operating conditions, selected with the purpose of observing the influence of cylinder-by-cylinder A/F ratio variations and the EGR effects on the combustion process and exhaust emissions for low to medium/high loads. The experimental outcomes showed relevant differences in the combustion evolution (characteristic combustion angles) between cylinders and not negligible variations in the emissions of the single cylinder exhaust and the overall engine one. This misalignment resulted to be due to differences in the injected fuel amount by the port injectors in the two cylinders, mainly deriving from the specific fuel rail geometry.
Technical Paper

Performance and Emissions of an Advanced Multi-Cylinder SI Engine Operating in Ultra-Lean Conditions

2019-09-09
2019-24-0075
In this work the performance and noxious emissions of a prototype Spark Ignition (SI) engine, working in ultra-lean conditions, are investigated. It is a four-cylinder engine, having a very high compression ratio, and an active pre-chamber. The required amount of air is provided by a low-pressure variable geometry turbocharger, coupled to a high-pressure E-compressor. The engine is equipped with a variable valve timing device on the intake camshaft. The goal of this activity is to support the development and the calibration of the described engine, and to exploit the full potential of the ultra-lean concept. To this aim, a combustion model for a pre-chamber engine, set up and validated in a previous paper for a similar single-cylinder unit, is utilized. It is coupled to additional in-house developed sub-models, employed for the prediction of the in-cylinder turbulence, heat transfer, knock and pollutant emissions.
Technical Paper

Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions

2019-09-09
2019-24-0021
The stringent worldwide exhaust emission legislations for CO2 and pollutants require significant efforts to increase both the combustion efficiency and the emission quality of internal combustion engines. With this aim, several solutions are continuously developed to improve the combustion efficiency of spark ignition engines. Among the various solutions, EGR represents a well-established technology to improve the gasoline engine performance and the nitrogen-oxides emissions. This work presents the results of an experimental investigation on the effects of the EGR technique on combustion evolution, knock tendency, performance and emissions of a small-size turbocharged PFI SI engine, equipped with an external cooled EGR system. Measurements are carried out at different engine speeds, on a wide range of loads and EGR levels. The standard engine calibration is applied at the reference test conditions.
Technical Paper

A Tabulated-Chemistry Approach Applied to a Quasi-Dimensional Combustion Model for a Fast and Accurate Knock Prediction in Spark-Ignition Engines

2019-04-02
2019-01-0471
The description of knock phenomenon is a critical issue in a combustion model for Spark-Ignition (SI) engines. The most known theory to explain this phenomenon is based on the Auto-Ignition (AI) of the end-gas, ahead the flame front. The accurate description of this process requires the handling of various aspects, such as the impact of the fuel composition, the presence of residual gas or water in the burning mixture, the influence of cool flame heat release, etc. This concern can be faced by the solution of proper chemistry schemes for gasoline blends. Whichever is the modeling environment, either 3D or 0D, the on-line solution of a chemical kinetic scheme drastically affects the computational time. In this paper, a procedure for an accurate and fast prediction of the hydrocarbons auto-ignition, applied to phenomenological SI engine combustion models, is proposed. It is based on a tabulated approach, operated on both ignition delay times and reaction rates.
Technical Paper

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-05-30
2018-37-0008
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-Power™), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers.
Journal Article

Combined Effects of Valve Strategies, Compression Ratio, Water Injection, and Cooled EGR on the Fuel Consumption of a Small Turbocharged VVA Spark-Ignition Engine

2018-04-03
2018-01-0854
In this work, various techniques are numerically investigated to assess and quantify their relative effectiveness in reducing the Brake Specific Fuel Consumption (BSFC) of a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine. The analyzed solutions include the Variable Compression Ratio (VCR), the port Water Injection (WI), and the external cooled Exhaust Gas Recirculation (EGR). The numerical analysis is developed in a 1D modeling framework. The engine is schematized in GT-Power™ environment, employing refined sub-models of the in-cylinder processes, such as the turbulence, combustion, knock, and heat transfer. The combustion and knock models have been extensively validated in previous papers, at different speed/load points and intake valve strategies, including operations with a relevant internal EGR rate and with liquid WI.
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part II: Model Concept, Validation and Discussion

2018-04-03
2018-01-0856
As known, reliable information about underlying turbulence intensity is a mandatory pre-requisite to predict the burning rate in quasi-dimensional combustion models. Based on 3D results reported in the companion part I paper, a quasi-dimensional turbulence model, embedded under the form of “user routine” in the GT-Power™ software, is here presented in detail. A deep discussion on the model concept is reported, compared to the alternative approaches available in the current literature. The model has the potential to estimate the impact of some geometrical parameters, such as the intake runner orientation, the compression ratio, or the bore-to-stroke ratio, thus opening the possibility to relate the burning rate to the engine architecture. Preliminarily, a well-assessed approach, embedded in GT-Power commercial software v.2016, is utilized to reproduce turbulence characteristics of a VVA engine.
Journal Article

Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle

2017-09-04
2017-24-0014
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knock onset. The new features of the 1D model include an improved treatment of the heat subtracted by the water evaporation, a newly developed correlation for the laminar flame speed, explicitly considering the amount of water in the unburned mixture, and a more detailed kinetic mechanism to predict the auto-ignition characteristics of fuel/air/water mixture. The extended 1D model is validated against experimental data collected at different engine speeds and loads, including knock-limited operation, for a twin-cylinder turbocharged SI engine.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine

2017-09-04
2017-24-0015
Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). Its reduction of course contributes to comply with the CO2 emissions legislation for vehicle homologation. Concerning the spark ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the BSFC at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal Compression Ratio (CR) selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high load, it permits to mitigate knock propensity, resulting in more optimized combustions.
Journal Article

Experimental and Numerical Study of the Water Injection to Improve the Fuel Economy of a Small Size Turbocharged SI Engine

2017-03-28
2017-01-0540
In this work, a promising technique, consisting of a liquid Water Injection (WI) at the intake ports, is investigated to overcome over-fueling and delayed combustions typical of downsized boosted engines, operating at high loads. In a first stage, experimental tests are carried out in a spark-ignition twin-cylinder turbocharged engine at a fixed rotational speed and medium-high loads. In particular, a spark timing and a water-to-fuel ratio sweep are both specified, to analyze the WI capability in increasing the knock-limited spark advance. In a second stage, the considered engine is schematized in a 1D framework. The model, developed in the GT-Power™ environment, includes user defined procedures for the description of combustion and knock phenomena. Computed results are compared with collected data for all the considered operating conditions, in terms of average performance parameters, in-cylinder pressure cycles, burn rate profiles, and knock propensity, as well.
Journal Article

A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine

2016-10-17
2016-01-2230
In this paper, the results of an extensive experimental analysis regarding a twin-cylinder spark-ignition turbocharged engine are employed to build up an advanced 1D model, which includes the effects of cycle-by-cycle variations (CCVs) on the combustion process. Objective of the activity is to numerically estimate the CCV impact primarily on fuel consumption and knock behavior. To this aim, the engine is experimentally characterized in terms of average performance parameters and CCVs at high and low load operation. In particular, both a spark advance and an air-to-fuel ratio (α) sweep are actuated. Acquired pressure signals are processed to estimate the rate of heat release and the main combustion events. Moreover, the Coefficient of Variation of IMEP (CoVIMEP) and of in-cylinder peak pressure (CoVpmax) are evaluated to quantify the cyclic dispersion and identify its dependency on peak pressure position.
Technical Paper

A Non-Linear Regression Technique to Estimate from Vibrational Engine Data the Instantaneous In-Cylinder Pressure Peak and Related Angular Position

2016-10-17
2016-01-2178
In this paper, a downsized twin-cylinder turbocharged spark-ignition engine is experimentally investigated at test-bench in order to verify the potential to estimate the peak pressure value and the related crank angle position, based on vibrational data acquired by an accelerometer sensor. Purpose of the activity is to provide the ECU of additional information to establish a closed-loop control of the spark timing, on a cycle-by-cycle basis. In this way, an optimal combustion phasing can be more properly accomplished in each engine operating condition. Engine behavior is firstly characterized in terms of average thermodynamic and performance parameters and cycle-by-cycle variations (CCVs) at high-load operation. In particular, both a spark advance and an A/F ratio sweep are actuated. In-cylinder pressure data are acquired by pressure sensors flush-mounted within the combustion chamber of both cylinders.
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Journal Article

Butanol-Diesel Blend Spray Combustion Investigation by UV-Visible Flame Emission in a Prototype Single Cylinder Compression Ignition Engine

2015-09-06
2015-24-2435
The paper reports the results of an experimental investigation carried out in a prototype optically accessible compression ignition engine fuelled with different blends of commercial diesel and n-butanol. Thermodynamic analysis and exhaust gas measurements were supported by optical investigations performed through a wide optical access to the combustion chamber. UV-visible digital imaging and 2D chemiluminescence were applied to characterize the combustion process in terms of spatial and temporal occurrence of auto-ignition, flame propagation, soot and OH evolution. The paper illustrates the results of the spray combustion for diesel and n-butanol-diesel blends at 20% and 40% volume fraction, exploring a single and double injection strategy (pilot+main) from a common rail multi-jet injection system. Tests were performed setting a pilot+main strategy with a fixed dwell time and different starts of injection.
Journal Article

Experimental Evaluation of an Advanced Ignition System for GDI Engines

2015-09-06
2015-24-2520
A plasma ignition system was tested in a GDI engine with the target of combustion efficiency improvement without modifying engine configuration. The plasma was generated by spark discharge and successively sustained to enhance its duration up to 4 ms. The innovative ignition system was tested in an optically accessible single-cylinder DISI engine to investigate the effects of plasma on kernel stability and flame front propagation under low loads and lean mixture (λ≅1.3). The engine was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). All experiments were performed at 2000 rpm and 100 bar injection pressure. UV-visible 2D chemiluminescence was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. A bandpass filter allowed selecting luminous signal due to OH radicals.
Technical Paper

Combustion Process Investigation in a DISI Engine Fuelled with n-butanol Through Digital Imaging and Chemiluminescence

2015-09-01
2015-01-1887
Direct-injection spark-ignition (DISI) engines have been adopted increasingly by the automotive industry in recent years due to their performance, reduced impact on the environment, and customer demand for advanced technology. However, detailed combustion processes in such engines are still not thoroughly analysed and understood. This work reports on the effects of different control parameters on the combustion process, such as fuel type, ignition timing and exhaust gas recirculation. Pure n-butanol and gasoline were used. All experiments were performed at 2000 rpm and 100 bar injection pressure in a transparent single-cylinder DISI engine equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). Crank angle resolved 2D chemiluminescence in the UV range for OH radical and CO2 detection was performed with an ICCD camera and a high-speed CMOS camera was used for cycle resolved imaging.
Technical Paper

Effect of Control Parameters in an Optical DISI Engine with Gasoline-Butanol Fueling

2015-09-01
2015-01-1944
Effects of n-butanol on the combustion process in a direct injection spark ignition engine were investigated through flame visualization and spectroscopy. An optically accessible engine was equipped for the trials with a commercial cylinder head and wall guided injection system. Injection pressure (100 bar) and engine speed (2000 rpm) were fixed while injection timing and duration were changed to realise stoichiometric and lean fuelling in homogenous charge conditions. Specifically, UV-visible digital imaging was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. UV-visible natural emission spectroscopy was applied to investigate the formation and the evolution of the main chemical compounds characterizing the spark ignition and combustion processes. Detailed image processing allowed to correlate the morphology and the local flame front curvature with thermodynamic data.
X