Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Multi Cylinder Partially Premixed Combustion Performance Using Commercial Light-Duty Engine Hardware

2014-10-13
2014-01-2680
This work investigates the performance potential of an engine running with partially premixed combustion (PPC) using commercial diesel engine hardware. The engine was a 2.01 SAAB (GM) VGT turbocharged diesel engine and three different fuels were run - RON 70 gasoline, RON 95 Gasoline and MK1 diesel. With the standard hardware an operating range for PPC from idle at 1000 rpm up to a peak load of 1000 kPa IMEPnet at 3000 rpm while maintaining a peak pressure rise rate (PPRR) below 7 bar/CAD was possible with either RON 70 gasoline and MK1 diesel. Relaxing the PPRR requirements, a peak load of 1800 kPa was possible, limited by the standard boosting system. With RON 95 gasoline it was not possible to operate the engine below 400 kPa. Low pressure EGR routing was beneficial for efficiency and combined with a split injection strategy using the maximum possible injection pressure of 1450 bar a peak gross indicated efficiency of above 51% was recorded.
Technical Paper

HCCI Heat Release Data for Combustion Simulation, Based on Results from a Turbocharged Multi Cylinder Engine

2010-05-05
2010-01-1490
When simulating homogenous charge compression ignition or HCCI using one-dimensional models it is important to have the right combustion parameters. When operating in HCCI the heat release parameters will have a high influence on the simulation result due to the rapid combustion rate, especially if the engine is turbocharged. In this paper an extensive testing data base is used for showing the combustion data from a turbocharged engine operating in HCCI mode. The experimental data cover a wide range, which span from 1000 rpm to 3000 rpm and engine loads between 100 kPa up to over 600 kPa indicated mean effective pressure in this engine speed range. The combustion data presented are: used combustion timing, combustion duration and heat release rate. The combustion timing follows the load and a trend line is presented that is used for engine simulation. The combustion duration in time is fairly constant at different load and engine speeds for the chosen combustion timings here.
Journal Article

The Effect of Intake Temperature in a Turbocharged Multi Cylinder Engine operating in HCCI mode

2009-09-13
2009-24-0060
The operating range in HCCI mode is limited by the excessive pressure rise rate and therefore high combustion induced noise. The HCCI range can be extended with turbocharging which enables increased dilution of the charge and thus a reduction of combustion noise. When the engine is turbocharged the intake charge will have a high temperature at increased boost pressure and can then be regulated in a cooling circuit. Limitations and benefits are examed at 2250 rpm and 400 kPa indicated mean effective pressure. It is shown that combustion stability, combustion noise and engine efficiency have to be balanced since they have optimums at different intake temperatures and combustion timings. The span for combustion timings with high combustion stability is narrower at some intake temperatures and the usage of external EGR can improve the combustion stability. It is found that the standard deviation of combustion timing is a useful tool for evaluating cycle to cycle variations.
Technical Paper

HCCI Operating Range in a Turbo-charged Multi Cylinder Engine with VVT and Spray-Guided DI

2009-04-20
2009-01-0494
Homogenous charge compression ignition (HCCI) has been identified as a promising way to increase the efficiency of the spark-ignited engine, while maintaining low emissions. The challenge with HCCI combustion is excessive pressure rise rate, quantified here with Ringing Intensity. Turbocharging enables increased dilution of the charge and thus a reduction of the Ringing Intensity. The engine used is an SI four cylinder base with 2.2L displacement and is equipped with a turbocharger. Combustion phasing control is achieved with individual intake/ exhaust cam phasing. Fuel injection with spray guided design is used. Cycle resolved combustion state is monitored and used for controlling the engine either in closed or open loop where balancing of cylinder to cylinder variations has to be done to run the engine at high HCCI load. When load is increased the NOx levels rise, the engine is then run in stoichiometric HCCI mode to be able to use a simple three-way catalyst.
Journal Article

Investigation of the Combustion Characteristics with Focus on Partially Premixed Combustion in a Heavy Duty Engine

2008-06-23
2008-01-1658
Partially Premixed Combustion (PPC) has shown its potential by combining high combustion controllability with emission characteristics that are close to those of an HCCI engine. In order to get PPC the ignition delay needs to be long enough for the fuel and air to mix prior to combustion. This can be achieved by injecting the fuel sufficiently early while running with high EGR. In order to find out where and how PPC occurs a map that shows the changes in combustion characteristics with injection timing and EGR was created. The combustion characteristics were studied in a six cylinder heavy duty engine where the Start of Injection (SOI) was swept from early to late injection over a wide range of EGR levels. The emissions were monitored during the sweeps and in the most promising regions, with low emissions and high efficiency, additional changes in injection pressure and engine speed were applied to get a more versatile picture of the combustion.
Journal Article

Ethanol-Diesel Fumigation in a Multi-Cylinder Engine

2008-04-14
2008-01-0033
Fumigation was studied in a 12 L six-cylinder heavy-duty engine. Port-injected ethanol was ignited with a small amount of diesel injected into the cylinder. The setup left much freedom for influencing the combustion process, and the aim of this study was to find operation modes that result in a combustion resembling that of a homogeneous charge compression ignition (HCCI) engine with high efficiency and low NOx emissions. Igniting the ethanol-air mixture using direct-injected diesel has attractive properties compared to traditional HCCI operation where the ethanol is ignited by pressure alone. No preheating of the mixture is required, and the amount of diesel injected can be used to control the heat release rate. The two fuel injection systems provide a larger flexibility in extending the HCCI operating range to low and high loads. It was shown that cylinder-to-cylinder variations present a challenge for this type of combustion.
Technical Paper

HCCI Engine Modeling and Control using Conservation Principles

2008-04-14
2008-01-0789
The Homogeneous Charge Compression Ignition (HCCI) principle holds promise to increase efficiency and to reduce emissions from internal combustion engines. As HCCI combustion lacks direct ignition timing control and auto-ignition depends on the operating condition, control of auto-ignition is necessary. Since auto-ignition of a homogeneous mixture is very sensitive to operating conditions, a fast combustion phasing control is necessary for reliable operation. To this purpose, HCCI modeling and model-based control with experimental validation were studied. A six-cylinder heavy-duty HCCI engine was controlled on a cycle-to-cycle basis in real time by applying in-cylinder pressure feedback. A low-complexity physical model was developed, aiming at describing the major thermodynamic and chemical interactions in the course of an engine stroke. The model shows the importance of thermal interaction between the combustion and the cylinder walls.
Technical Paper

Improving Ion Current Feedback for HCCI Engine Control

2007-10-29
2007-01-4053
In HCCI you do not have the same control of the combustion like in SI and Diesel engines. Controlling the start of a combustion event is a difficult task and requires feedback from previous cycles. This feedback can be retrieved from ion current measurements. By applying a voltage over the spark gap, ions will lead a current and a signal that represents the combustion in the cylinder will be retrieved. Voltages of 450 V were used. The paper describes a new method to enhance the combustion phasing from the Ion current trace in HCCI engines. The method is using the knowledge of how the signal should look. This is known due to the fact that the shape of the ion current signal is similar from cycle to cycle. This new observation is shown in the paper. Also the correlation between the ion current and CA50 was studied. Later the signals have been used for combustion feedback.
Technical Paper

Multi-Output Control of a Heavy Duty HCCI Engine Using Variable Valve Actuation and Model Predictive Control

2006-04-03
2006-01-0873
Autoignition of a homogeneous mixture is very sensitive to operating conditions, therefore fast control is necessary for reliable operation. There exists several means to control the combustion phasing of an Homogeneous Charge Compression Ignition (HCCI) engine, but most of the presented controlled HCCI result has been performed with single-input single-output controllers. In order to fully operate an HCCI engine several output variables need to be controlled simultaneously, for example, load, combustion phasing, cylinder pressure and emissions. As these output variables have an effect on each other, the controller should be of a structure which includes the cross-couplings between the output variables. A Model Predictive Control (MPC) controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure.
Technical Paper

Variable Valve Actuation for Timing Control of a Homogeneous Charge Compression Ignition Engine

2005-04-11
2005-01-0147
Autoignition of a homogeneous mixture is very sensitive to operating conditions. Therefore fast combustion phasing control is necessary for reliable operation. There are several means to control the combustion phasing of a Homogeneous Charge Compression Ignition (HCCI) engine. This paper presents cycle-to-cycle cylinder individual control results from a six-cylinder HCCI engine using a Variable Valve Actuation (VVA) system. As feedback signal, the crank angle for 50% burned, based on cylinder pressure, is used. Three control structures are evaluated, Model Predictive Control (MPC), Linear Quadratic Gaussian control (LQG) and PID control. In the control design of the MPC and LQG controller, dynamic models obtained by system identification were used. Successful experiments were performed on a port-injected six-cylinder heavy-duty Diesel engine operating in HCCI mode.
Technical Paper

Cycle-to-Cycle Control of a Dual-Fuel HCCI Engine

2004-03-08
2004-01-0941
A known problem of the HCCI engine is its lack of direct control and its requirements of feedback control. Today there exists several different means to control an HCCI engine, such as dual fuels, variable valve actuation, inlet temperature and compression ratio. Independent of actuation method a sensor is needed. In this paper we perform closed-loop control based on two different sensors, pressure and ion current sensor. Results showing that they give similar control performance within their operating range are presented. Also a comparison of two methods of designing HCCI timing controller, manual tuning and model based design is presented. A PID controller is used as an example of a manually tuned controller. A Linear Quadratic Gaussian controller exemplifies model based controller design. The models used in the design were estimated using system identification methods. The system used in this paper performs control on cycle-to-cycle basis. This leads to fast and robust control.
Technical Paper

Ion Current Sensing for HCCI Combustion Feedback

2003-10-27
2003-01-3216
Measurement of ion current signal from HCCI combustion was performed. The aim of the work was to investigate if a measurable ion current signal exists and if it is possible to obtain useful information about the combustion process. Furthermore, influence of mixture quality in terms of air/fuel ratio and EGR on the ion current signal was studied. A conventional spark plug was used as ionization sensor. A DC voltage (85 Volt) was applied across the electrode gap. By measuring the current through the gap the state of the gas can be probed. A comparison between measured pressure and ion current signal was performed, and dynamic models were estimated by using system identification methods. The study shows that an ion current signal can be obtained from HCCI combustion and that the signal level is very sensitive to the fuel/air equivalence ratio.
X