Refine Your Search

Search Results

Technical Paper

Simulation of a 1.9 Litre Direct Injection Turbocharged Diesel Engine at Part Load

2003-03-03
2003-01-1065
Engine cycle simulation is an essential tool in the development of modern internal combustion engines. As engines evolve to meet tougher environmental and consumer demands, so must the analysis tools that the engineer employs. This paper reviews the application of such a tool, VIRTUAL 4-STROKE [1], in the modelling of a benchmark 1.9 Litre TDI engine. In an earlier paper presented to the Society [2] the authors presented results of a validation study on the same engine under full load operation. This paper expands on that work with validation of the simulation model against measured data over a full range of part load operation.
Technical Paper

MAPS OF DISCHARGE COEFFICIENTS FOR VALVES, PORTS AND THROTTLES

2001-12-01
2001-01-1798
The paper discusses the application of maps of measured discharge coefficients for poppet valves, cylinder ports, and in-pipe throttles within a theoretical simulation of the unsteady gas flow through an internal combustion engine. The maps provided cover both inflow and outflow at the discontinuity being discussed and are displayed as contour maps of the discharge coefficient as some function of the geometrical flow area of that discontinuity and of the pressure ratio across it up to a maximum value of 2.0. An engine simulation package is used for both a four-stroke and a two-stroke engine to determine the typical pressure ratio and area ratio characteristics which pertain at all such discontinuities at representative engine speed and load conditions.
Technical Paper

REDUCING EXHAUST EMISSIONS AND INCREASING POWER OUTPUT USING A TUNED EXHAUST PIPE ON A TWO-STROKE ENGINE

2001-12-01
2001-01-1853
At the 1999 SETC meeting, a paper presented a simple, tuned and silenced exhaust system for a two-stroke engine which theoretically reduced both noise and exhaust emissions and increased engine power and fuel efficiency. In this paper that design concept is applied to a small 56 cc industrial engine and experimentally shown to deliver the projected behaviour which was predicted in that earlier publication. Experimental test results are presented for power output, fuel consumption, and exhaust emissions to illustrate these statements. An accurate engine simulation software package (VIRTUAL 2-STROKE) is employed to model the entire two-stroke engine and to demonstrate not only its effectiveness as a design tool in this area but also that it can accurately predict the above-mentioned performance and emission characteristics.
Technical Paper

Application of Direct Air-Assisted Fuel Injection to a SI Cross-Scavenged Two-Stroke Engine

1993-09-01
932396
A 500 cc single cylinder two-stroke engine employing cross scavenging and direct air-assisted gasoline injection is described. Preliminary engine test results are presented for 3000 rpm full load and 1600 rpm part load operating conditions. The effects of fuel injection timing on full and part load brake specific fuel consumption and exhaust emissions are examined.
Technical Paper

Reduction of Fuel Consumption and Emissions for a Small Capacity Two-Stroke Cycle Engine

1993-09-01
932393
The emissions produced from a simple carburetted crankcase scavenged two-stroke cycle engine primarily arise due to losses of fresh charge from the exhaust port during the scavenging process. These losses lead to inferior fuel consumption and a negative impact on the environment. Pressure on exhaust emissions and fuel consumption has reduced the number of applications of the two-stroke cycle engine over the years, however the attributes of simplicity, high power density and potential low manufacturing costs have ensured its continuing use for mopeds and motorcycles, small outboard engines and small utility engines. Even these last bastions of the simple two-stroke engine are being challenged by the four stroke alternative as emissions legislation becomes tighter and is newly formulated for many categories of engines. A simple solution is described which reduces short circuit and scavenge losses in a cost effective way.
Technical Paper

Non-Isentropic Analysis of Varying Area Flow in Engine Ducting

1993-09-01
932399
In two previous papers to this Society (1, 2)* an ‘alternative’ method was presented for the prediction of the unsteady gas flow behaviour through a reciprocating internal combustion engine. The computational procedures led further to the prediction of the overall performance characteristics of the power unit, be it operating on a two- or a four-stroke cycle. Correlation with measurements was given to illustrate its effectiveness and accuracy. In the ducts of such engines there are inevitably sectional changes of area which are either gradual or sudden. A tapered pipe is typical of a gradual area change whereas a throttle or a turbocharger nozzle represents a sudden area change. In those previous papers it was indicated that a fuller explanation, of the theoretical procedures required to predict accurately the unsteady gas flow in such duct sections would be given in a later paper to this Society; this is that necessary publication.
Technical Paper

Correlation of an Alternative Method for the Prediction of Engine Performance Characteristics with Measured Data

1993-03-01
930501
This paper presents confirmation of the accuracy of prediction of an engine simulation model. The experimental data used to compare with the output of the simulation model are from a single cylinder four-stroke cycle engine and from a single-cylinder two-stroke cycle engine; both engines are naturally aspirated and use spark- ignition. In addition, for the two-stroke cycle engine, the experimental data includes two cylinders with different scavenging characteristics which induce variations of performance characteristics of up to 20%. The fundamentals of the theoretical approach have been presented before to SAE (1)* and this paper extends that theory by providing a detailed discussion on the inclusion of measured scavenging characteristics to enable the simulation model to predict the mechanism of the in-cylinder gas exchange process.
Technical Paper

Initial Development of a Two-Stroke Cycle Diesel Engine for Automotive Applications

1987-09-01
871643
A three cylinder two-stroke cycle diesel engine is proposed for automotive use. The engine is of the simple loop or cross-scavenging type with a crosshead seal and under piston scavenging pump. This paper records the initial investigations of this concept using a purpose built single cylinder engine. Results from different combustion systems are presented together with tests with the same engine when using an external air supply. Measurements from a parallel investigation using a laser doppler anemometer to measure air swirl motion within one of the chambers are also presented.
Technical Paper

An Experimental Comparison of Loop and Cross Scavenging of the Two-Stroke Cycle Engine

1986-09-01
861240
In a previous paper (6)* SAE 850178, the authors pointed out that the single-cycle gas simulation rig which they had developed would prove to be an invaluable experimental tool for the development of two-stroke cycle engine cylinders to attain better scavenging and trapping efficiency of the fresh charge. This paper reports on the use of that now proven experimental technique to examine one of the longest running, and hitherto unresolved, discussions in the field of small two-stroke cycle engines: is loop-scavenging really superior to cross-scavenging? All of the cross-scavenging tests in the paper are compared to tests conducted on loop-scavenged cylinders of the same basic geometry and which were reported previously to SAE. The main conclusion from the experimental investigation is that cross-scavenging is superior to loop-scavenging at low or modest scavenge ratios but is inferior at high scavenge ratios.
Technical Paper

Computational Fluid Dynamics Applied to Two-Stroke Engine Scavenging

1985-09-01
851519
A three dimensional computational fluid dynamics program is used to simulate theoretically the scavenging process in the loop-scavenged two-stroke cycle engine. The theoretical calculation uses the k - ε turbulence model and all calculations are confined to the in-cylinder region. The calculation geometry is oriented towards five actual engine cylinders which have been tested under firing conditions for the normal performance characteristics of power, torque, and specific fuel consumption. The same five engine cylinders have also been experimentally tested on a single-cycle gas testing rig for their scavenging efficiency - scavenge ratio characteristics. The ranking of the cylinders in order of merit in terms of scavenging efficiency by both the rig and the theoretical calculations is shown to be in good agreement with the evidence provided by the actual firing engine test results.
Technical Paper

Single Cycle Gas Testing Method for Two-Stroke Engine Scavenging

1985-02-01
850178
This paper presents a single-cycle gas simulation of the scavenging process in a two-stroke cycle engine. The apparatus used is described in the most detailed fashion and the experimental procedure is covered completely. On the apparatus is placed some eleven differing cylinders of a Yamaha 250 motorcycle engine and the scavenging efficiency - scavenge ratio characteristics of each determined experimentally. The results of these experiments are compared with the known performance characteristics of the same eleven cylinders which were obtained under firing conditions for variations of power, torque, air-flow, fuel consumption and scavenging efficiency at several speeds and throttle positions. The correlation, between the ranking of the several cylinders determined on the scavenging simulation apparatus with the performance characteristics obtained under firing conditions, is very good.
Technical Paper

A New Piston Design for a Cross-Scavenged Two-Stroke Cycle Engine with Improved Scavenging and Combustion Characteristics

1984-09-01
841096
This paper describes a unique design of deflector piston for a cross-scavenged two-stroke cycle engine which incorporates the advantages of good scavenging, rapid combustion and reduced thermal loading on the piston. Test results are presented to confirm this statement from two small capacity outboard marine engines and comparisons are made between the experimental test results from the modified and standard power units; of significance is the reduced fuel consumption rate of the modified engines in both cases. A high bmep 400 cm3 single cylinder engine is designed, constructed and tested so as to determine the extent of deflector burning under conditions of high thermal loading. On all three engines the ignition timing for best power is shown to be in the 21-24° btdc region, by comparison with 32-38° btdc conventionally. The spark plug seat temperatures are reduced to 150 C maximum at peak power by comparison with 250-280 °C normally.
Technical Paper

Further Tests on Reducing Fuel Consumption with a Carburetted Two-Stroke Cycle Engine

1983-09-12
831303
This paper describes a unique and uncomplicated method of stratified-charging a two-stroke cycle engine which assists in reducing the short-circuited loss of fuel during scavenging. Performance characteristics as presented were acquired from tests conducted on a 400 cm3 naturally aspirated, single cylinder, spark ignition two-stroke engine with carburettor control of gasoline fuel, the design and construction of the engine also being done at The Queen's University of Belfast. Using a tuned exhaust pipe, the engine produces a peak power of 16 kW at 5000 rev/min and has a minimum brake specific fuel consumption of 0.275 kg/kWh. Moreover, for the tests presented at full and quarter throttle openings, virtually all of the brake specific fuel consumption values are below 0.36 kg/kWh. Most of the performance characteristics shown at various engine speeds are as a function of air/fuel ratio. This paper is a continuation of that presented as SAE 830093.
Technical Paper

Reduction of Fuel Consumption of a Spark-Ignition Two-Stroke Cycle Engine

1983-02-01
830093
The paper describes and lists the performance characteristics of a 400 cm3 single-cylinder two-stroke cycle engine with natural-aspiration, spark-ignition and carburetter control of gasoline fuel. The engine features an uncomplicated and unique system of stratified-charging which helps reduce the short-circuited loss of fuel during scavenging. With an untuned exhaust system the engine produces a peak power of 13 kW at 5500 rev/min and a brake specific fuel consumption which has a minimum of 0.265 kg/kWh but, more importantly, virtually the entire speed and load range is below 0.34 kg/kWh (0.55 lb/hp. hr). All performance characteristics at several throttle openings are presented at various engine speeds as a function of air/fuel ratio.
Technical Paper

A Computer Model of a Pulsejet Engine

1982-02-01
820953
This paper deals with the performance prediction of one member of a family of thrust producing intermittent combustion engines, namely the pulsejet. The first part is concerned with formulating basic concepts of how pulsejets work. It describes the different methods of providing intake valving action and derives theory to demonstrate the operation of the aerodynamic tuned valve in particular. The second part is concerned with devising a computer program to simulate and predict the performance of valveless pulsejets. The program is based on the method of characteristics for calculating unsteady gas flow. Theories and techniques are given to handle the major problems associated with this application. These problems include the large range of discontinuous temperature and entropy, flow through an area discontinuity and the calculation of mean thrust.
Technical Paper

Unsteady Gas Flow Through Reed Valve Induction Systems

1978-02-01
780766
Previous publications from The Queen's University of Belfast have described the unsteady gas flow through a naturally aspirated two-cycle engine and the most recent of these have detailed the scavenge process, the combustion model and muffler design. It is thus now possible to predict the unsteady gas flow behaviour through and the performance and noise characteristics in this type of engine with a good degree of accuracy. This paper describes a mathematical model which has been formulated to simulate the action of the two-cycle engine fitted with a reed valve due to the unsteady gas dynamic behaviour in the inlet tract and makes comparisons with measurements. A complete simulation on the computer of a two-cycle engine fitted with a reed intake valve is thus now possible.
Technical Paper

The Unsteady Gas Exchange Characteristics of a Two-Cycle Engine

1976-02-01
760644
The theoretical modelling of the scavenge process for a naturally aspirated two-cycle engine is described and employed in conjunction with an unsteady gas dynamic analysis of flow in the engine ducting. Programmed for a digital computer, the results of this theoretical study are shown in relation to a 250 cm3 engine with values of predicted charging efficiency, scavenging efficiency, and delivery ratio given as a function of engine speed. These are compared with measured values of scavenging efficiency and the usual performance characteristics of power, mean effective pressure, delivery ratio, and specific fuel consumption. Also compared are the measured and predicted pressure diagrams taken in the cylinder, the crankcase, and the exhaust and inlet ducts. The design of a somewhat unique cylinder gas sampling valve of the mechanical type is described and its usage discussed both theoretically and practically.
Technical Paper

Prediction of Two-Cycle Engine Performance Characteristics

1976-02-01
760645
Previous papers published by the author have described unsteady gas flow through a naturally aspirated two-cycle engine and the most recent of these publications details a theoretical modelling of the gas exchange or scavenge process for the cylinder of this type of power unit. This results in the ability to predict the trapped charge state, mass, and purity characteristics. With such information it becomes sensible to apply a closed cycle thermodynamic analysis to it and to further predict directly power, torque, and fuel consumption characteristics. This paper describes such a simple closed cycle analysis and compares the theoretical results of power, mean effective pressure, specific fuel consumption, and cylinder pressure diagrams with corresponding measured data from two engines.
Technical Paper

Studying Scavenge Flow in a Two-Stroke Cycle Engine

1975-02-01
750752
The study of scavenge flow in two-cycle engines is of great importance in the development of that type of internal combustion engine and has been extensively covered by numerous researchers over the last half -century. Alfred Jante in SAE paper 680468 suggested an indirect and comparative test for the assessment of scavenge flow which he, and others, have shown to be both a simple and extremely relevant technique. The acquisition and reduction of data for this experimental method proved to be laborious and time consuming, and it is the purpose of this paper to show that it is possible to eliminate these tedious aspects by automation of both data recording and processing. This is described and examples of its usage are given.
Technical Paper

Further Studies of Noise Characteristics of Internal Combustion Engine Exhaust Systems

1974-02-01
740713
This paper describes a theoretical and experimental investigation of the noise characteristics of some basic internal combustion engine exhaust systems. On the basis of a one-dimensional analysis of the unsteady internal flow, the treatment is extended to consider the noise radiated by the efflux of gas from the atmospheric termination of the tail pipe. Using a rotary valve exhaust simulator, experimental pressure-time histories and one-third octave noise spectrograms were obtained. These are compared with those calculated.
X