Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Reanalysis of Experimental Brain Strain Data: Implication for Finite Element Head Model Validation

2018-11-12
2018-22-0007
Relative motion between the brain and skull and brain deformation are biomechanics aspects associated with many types of traumatic brain injury (TBI). Thus far, there is only one experimental endeavor (Hardy et al., 2007) reported brain strain under loading conditions commensurate with levels that were capable of producing injury. Most of the existing finite element (FE) head models are validated against brain-skull relative motion and then used for TBI prediction based on strain metrics. However, the suitability of using a model validated against brain-skull relative motion for strain prediction remains to be determined. To partially address the deficiency of experimental brain deformation data, this study revisits the only existing dynamic experimental brain strain data and updates the original calculations, which reflect incremental strain changes. The brain strain is recomputed by imposing the measured motion of neutral density target (NDT) to the NDT triad model.
Journal Article

Frontal Crash Protection in Pre-1998 Vehicles versus 1998 and Later Vehicles

2010-04-12
2010-01-0142
This investigation addresses and evaluates: (1) belted drivers in frontal crashes; (2) crashes divided into low, medium, and high severity; (3) air-bag-equipped passenger vehicles separated into either model years 1985 - 1997 (with airbags) or model years 1998 - 2008; (4) rate of Harm as a function of crash severity and vehicle model year; and (5) injury patterns associated with injured body regions and the involved physical components, by vehicle model year. Comparisons are made between the injury patterns related to drivers seated in vehicles manufactured before 1998 and those manufactured 1998 or later. The purpose of this comparative analysis is to establish how driver injury patterns may have changed as a result of the introduction of more recent safety belt technology, advanced airbags, or structural changes.
Technical Paper

Process Automation for Finite Element (FE) Anthropomorphic Test Device (ATD) Development - a Neck Pendulum Certification Case Study using Visual-SDK

2010-04-12
2010-01-0259
Process automation is one of the emerging technologies in the field of computer aided engineering (CAE). A majority of the CAE processes involve repetitive steps during the product development and enhancement phases. An effort is being made to improve the engineer's efficiency by automating the repetitive tasks. The objective of the current study is to demonstrate the capabilities of CAE or FE process automation. Using a CAE process authoring and execution environment, a process was developed for the standard neck pendulum certification for the FE Hybrid III 5th percentile female ATD model. Standard pre-processing tasks for the typical neck pendulum certification simulation such as ATD head/neck replacement and positioning, resolving connections, quality checks, boundary and loading conditions, contact definitions, etc. were defined as process steps. Solver execution and post-processing were also made part of the process automation for the review of results and report generation.
Journal Article

Fire Occurrence in Side Crashes Based on NASS/CDS

2009-04-20
2009-01-0008
The basis for this analysis was NASS/CDS 1997 to 2006. In the NASS database there were 60 cases with major fires in side impact crashes, 37 of which were in passenger vehicles less than 10 years old. These newer vehicles were examined in this study. Cases in NASS were examined to identify crash characteristics associated with major fires in side crashes. The database contained 22 cases with fatalities, eleven of which were coded as fire related. Three of these were associated with fires that did not originate from the crashed vehicle. The fuel tank was coded as the fire origin for 41% of the major fires in vehicles with side damage and for 7 out of the 8 vehicles with fire related fatalities. The most frequent crash characteristic was an impact with a narrow object that produced severe side damage. Lower extent of damage was evident in two fatal cases that involved a rollover following the side impact.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Mechanisms of Traumatic Rupture of the Aorta and Associated Peri-isthmic Motion and Deformation

2008-11-03
2008-22-0010
This study investigated the mechanisms of traumatic rupture of the aorta (TRA). Eight unembalmed human cadavers were tested using various dynamic blunt loading modes. Impacts were conducted using a 32-kg impactor with a 152-mm face, and high-speed seatbelt pretensioners. High-speed biplane x-ray was used to visualize aortic motion within the mediastinum, and to measure deformation of the aorta. An axillary thoracotomy approach was used to access the peri-isthmic region to place radiopaque markers on the aorta. The cadavers were inverted for testing. Clinically relevant TRA was observed in seven of the tests. Peak average longitudinal Lagrange strain was 0.644, with the average peak for all tests being 0.208 ± 0.216. Peak intraluminal pressure of 165 kPa was recorded. Longitudinal stretch of the aorta was found to be a principal component of injury causation. Stretch of the aorta was generated by thoracic deformation, which is required for injury to occur.
Journal Article

Fire Occurrence in Frontal Crashes Based on NASS/CDS

2008-04-14
2008-01-0256
The basis for this analysis was FARS 1979 to 2005 and NASS/CDS 1997 to 2004. For these years, there were 12,493 cases in FARS where fire was coded as the most harmful event. In NASS there were 227 cases with major fires, 87 of which were in frontal crashes. The paper shows the annual trends in FARS with regard to overall fatalities and fatalities with fire as the most harmful event by direction of principal vehicle damage. The NASS/CDS files are used to determine the location of fire origin. The FARS data show that crashes with frontal damage are the most frequent crash types where fire is the most harmful event. In general, the most harmful event fire rates have declined with the overall fatality rates in FARS. However, in recent years the trend in fires with frontal damage has been on the increase. Cases in NASS were examined to identify patterns for major fires in frontal crashes. Engine compartment fires were by far the most frequent.
Technical Paper

Severe Head and Neck Injuries in NASS Rear Impacts

2008-04-14
2008-01-0190
In this paper the characteristics of rear impact crashes are examined. General information about rear impact collisions is derived from recent data from the National Automotive Sampling System, General Estimates System (NASS/GES) and Fatality Analysis Reporting System (FARS) as reported in the annual National Highway Traffic Safety Administration (NHTSA) Traffic Safety Facts. Additional details about the frequency, severity, type, and cause of injuries to front seat outboard occupants is analyzed using the National Automotive Sampling System, Crashworthiness Data System (NASS/CDS) data from 1997 to 2005. Serious head and neck injuries are focused on for further analysis. Specific cases from the CDS database that meet this classification are examined. Federal Motor Vehicle Safety Standard (FMVSS) 301-R test data is used to analyze occupant, seat, and vehicle kinematics in single impact rear collisions and to look at the occupant rebound velocity.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

A Study of the Response of the Human Cadaver Head to Impact

2007-10-29
2007-22-0002
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests.
Technical Paper

Using Forefoot Acceleration to Predict Forefoot Trauma in Frontal Crashes

2007-04-16
2007-01-0704
A common injury type among foot and ankle injury is the Lisfranc trauma, or injury to the forefoot. The Lisfranc injury indicates abnormal alignment of the tarsal-metatarsal joints with the loss of their normal spatial relationships. In 2003, Smith completed a laboratory study of this injury mechanism at Wayne State University [1, 2]. He found Lisfranc trauma was correlated with impact force to the forefoot. He proposed a probability of injury function that is based on the applied force to the forefoot. This study examined the instrumentation in the foot of the dummies in the USA New Car Assessment Program (NCAP) and Insurance Institute of Highway Safety (IIHS) frontal crashes. Nineteen different passenger vehicles representing four different vehicle classes were selected based mostly on a large presence in the USA vehicle fleet. Both NCAP and IIHS crashed these nineteen makes and models.
Technical Paper

Recent MVFRI Research in Crash-Induced Vehicle Fire Safety

2007-04-16
2007-01-0880
The research reported in this paper is a follow-on to a five year research program conducted by General Motors in accordance with an administrative Settlement Agreement reached with the US Department of Transportation. This paper is the fourth in a series of technical papers intended to disseminate the results of the ongoing research [Digges 2004, 2005, 2006]. This paper summarizes progress in several of the projects to better understand the crash factors that are associated with crash induced fires. Part I of the paper presents the distribution of fire cases in NASS/CDS by damage severity and injury severity. It also examines the distributions by crash mode, fire origin, and fuel leakage location. The distributions of cases with fires and entrapment are also examined. Part II of the paper provides summaries of recent projects performed by MVFRI contractors. Technologies to reduce fuel leakage from siphoning and rollover are documented.
Technical Paper

Opportunities for Reducing Casualties in Far-side Crashes

2006-04-03
2006-01-0450
This paper uses the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) to estimate the population of front seat occupants exposed to far-side crashes and those with MAIS 3+ and fatal injuries. Countermeasures applicable to far-side planar crashes may also have benefits in some far-side rollovers. The near-side and far-side rollover populations with MAIS 3+ injuries and fatalities are also calculated and reported. Both restrained and unrestrained occupants are considered. Populations are subdivided according to ejection status – not ejected, full ejection, partial ejection and unknown ejection. Estimates are provided for the annual number of MAIS 3+ injuries and fatalities that occur each year in each category for the following belt use scenarios: (1) belt use as reported in NASS and (2) 100% belt use. In scenario 1, the exposure and casualties for the unbelted population are also shown. About 34% of the MAIS 3+F injuries in side crashes are in far-side crashes.
Technical Paper

Summary of Recent Research in Crash-Induced Vehicle Fire Safety

2006-04-03
2006-01-0551
The research reported in this paper is a follow-on to a five year research program conducted by General Motors in accordance with an administrative Settlement Agreement reached with the US Department of Transportation. This paper is the fourth in a series of technical papers intended to disseminate the results of the ongoing research [Digges 2003, 2004, 2005]. This paper summarizes progress in several of the projects dealing with underhood fires and testing of a hydrogen fuel tank. Calorimeter tests of underhood materials found a wide range of flammability for the structural plastics as well as the underhood sound insulation. Calorimeter tests of underhood fluids (lubricants and hydraulic fluid) showed that their flash points were less than 188°C and the minimum temperature of a hot surface to cause ignition was less than 325°C. Tests of four different vehicles to determine the exhaust manifold operating temperatures found a range between 241°C and 550°C.
Technical Paper

Analysis of a Real-World Crash Using Finite Element Modeling to Examine Traumatic Rupture of the Aorta

2005-04-11
2005-01-1293
One of the leading causes of death in automotive crashes is traumatic rupture of the aorta (TRA) or blunt aortic injury (BAI). The risk of fatality is high if an aortic injury is not detected and treated promptly. The objective of this study is to investigate TRA mechanisms using finite element (FE) simulations of reconstructed real-world accidents involving aortic injury. For this application, a case was obtained from the William Lehman Injury Research Center (WLIRC), which is a Crash Injury Research and Engineering Network (CIREN) center. In this selected crash, the case vehicle was struck on the left side with a Principal Direction of Force (PDoF) of 290 degrees. The side structure of the case vehicle crushed a maximum of 0.33 m. The total delta-V was estimated to be 6.2 m/s. The occupant, a 62-year old mid-sized male, was fatally injured. The occupant sustained multiple rib fractures, laceration of the right ventricle, and TRA, among other injuries.
Technical Paper

Research Programs in Crash-Induced Fire Safety

2005-04-11
2005-01-1425
The research reported in this paper is a follow-on to a five year research program conducted by General Motors in accordance with an administrative Settlement Agreement reached with the US Department of Transportation. This paper is the third in a series of technical papers intended to disseminate the results of the ongoing research [Digges 2003 and 2004]. This paper summarizes progress in several of the projects. A statistical analysis of FARS and NASS/CDS indicates that frontal collisions are the most common in both fatal and non-fatal crashes with fires. NASS/CDS indicates that most major and minor fires originate under the hood. Fire rates in FARS are higher in rollovers than in planar crashes, and most rollover fires in NASS/CDS originate under the hood.
Technical Paper

A Research Program in Crash-Induced Fire Safety

2004-03-08
2004-01-0475
The research reported in this paper is a follow-on to a five year research program conducted by General Motors in accordance with an administrative Settlement Agreement reached with the US Department of Transportation. In a subsequent Judicial Settlement, GM agreed fund more than $4.1 million in fire related research over the period 2001-2004. The purpose of this paper is to provide a public update report on the projects that have been funded under this latter research program, along with results to date. An analysis of FARS and State accident data has been completed. Results indicate that fire rates have been significantly reduced over the past 20 years. Fire rates for passenger cars and LTVs have approached similar levels. Fire rates by crash mode indicate that rear impact fires have been significantly reduced; however, fires in rollover crashes have seen considerably less reduction. The highest percentages of fires are subsequent to frontal impacts.
Technical Paper

Crash Simulations to Understand Injury Mechanisms in Maneuver Induced Rollover Crashes

2004-03-08
2004-01-0330
Real world crashes in NASS/CDS 1997 to 2000 were examined individually in order to find patterns in single vehicle rollover crashes. Typical maneuver induced rollovers of SUV's were reconstructed using the HVE model. From HVE and roll event reconstructions, the values of longitudinal, lateral, and vertical displacement, and roll, pitch, and yaw angle, for the pre-roll and rollover event were calculated. These values were used as inputs to a MADYMO model for simulated vehicle motion to predict occupant kinematics. Both near-side and far-side rollovers were simulated. The MADYMO model provided estimates of head velocity for the various rollover scenarios for a belted driver. In both near-side and far-side rollovers of the type reconstructed, the lateral component of head velocity was the greatest. Maximum head velocities of 5.3 m/s were predicted. The simulations were for two complete rollovers. The highest head velocity occurred during the first three quarter turns.
Technical Paper

Development of a Computer Model to Predict Aortic Rupture Due to Impact Loading

2001-11-01
2001-22-0007
Aortic injuries during blunt thoracic impacts can lead to life threatening hemorrhagic shock and potential exsanguination. Experimental approaches designed to study the mechanism of aortic rupture such as the testing of cadavers is not only expensive and time consuming, but has also been relatively unsuccessful. The objective of this study was to develop a computer model and to use it to predict modes of loading that are most likely to produce aortic ruptures. Previously, a 3D finite element model of the human thorax was developed and validated against data obtained from lateral pendulum tests. The model included a detailed description of the heart, lungs, rib cage, sternum, spine, diaphragm, major blood vessels and intercostal muscles. However, the aorta was modeled as a hollow tube using shell elements with no fluid within, and its material properties were assumed to be linear and isotropic.
X