Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Benefits of a Higher Octane Standard Gasoline for the U.S. Light-Duty Vehicle Fleet

2014-04-01
2014-01-1961
This paper explores the benefits that would be achieved if gasoline marketers produced and offered a higher-octane gasoline to the U.S. consumer market as the standard grade. By raising octane, engine knock constraints are reduced, so that new spark-ignition engines can be designed with higher compression ratios and boost levels. Consequently, engine and vehicle efficiencies are improved thus reducing fuel consumption and greenhouse gas (GHG) emissions for the light-duty vehicle (LDV) fleet over time. The main objective of this paper is to quantify the reduction in fuel consumption and GHG emissions that would result for a given increase in octane number if new vehicles designed to use this higher-octane gasoline are deployed. GT-Power simulations and a literature review are used to determine the relative brake efficiency gain that is possible as compression ratio is increased.
Journal Article

A Forward-Looking Stochastic Fleet Assessment Model for Analyzing the Impact of Uncertainties on Light-Duty Vehicles Fuel Use and Emissions

2012-04-16
2012-01-0647
Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas emissions and fuel consumption to prevent negative climate change impacts and protect the environment. However, making such predictions is made difficult due to the uncertainties associated with the anticipated developments of the technology and fuel situation in road transportation, which determine the total fuel use and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future vehicles, fuels' emissions, availability of alternative fuels, demand, as well as market deployment of new technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment model that takes detailed technological and demand inputs.
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

2009-06-15
2009-01-1892
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
Journal Article

The Trade-off between Automobile Acceleration Performance, Weight, and Fuel Consumption

2008-06-23
2008-01-1524
This paper evaluates how the fuel consumption of the average new U.S. passenger car will be penalized if engine and vehicle improvements continue to be focused on developing bigger, heavier and more powerful automobiles. We quantify a parameter called the Emphasis on Reducing Fuel Consumption (ERFC) and find that there has been little focus on improving fuel consumption in the U.S. over the past twenty years. In contrast, Europe has seen significantly higher ERFC. By raising the ERFC over the next few decades, we can reduce the average U.S. new car's fuel consumption by up to some 40 percent and cut the light-duty vehicle fleet's fuel use by about a quarter. Achieving substantial fuel use reduction will remain a major challenge if automobile size, weight and power continue to dominate.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Phenomena that Determine Knock Onset in Spark-Ignition Engines

2007-01-23
2007-01-0007
Experiments were carried out to collect in-cylinder pressure data and microphone signals from a single-cylinder test engine using spark timingsbefore, at, and after knock onset for toluene reference fuels. The objective was to gain insight into the phenomena that determine knock onset, detected by an external microphone. In particular, the study examines how the end-gas autoignition process changes as the engine's spark timing is advanced through the borderline knock limit into the engine's knocking regime. Fast Fourier transforms (FFT) and bandpass filtering techniques were used to process the recorded cylinder pressure data to determine knock intensities for each cycle. Two characteristic pressure oscillation frequencies were detected: a peak just above 6 kHz and a range of peaks in the 15-22 kHz range. The microphone data shows that the audible knock signal has the same 6 kHz peak.
Technical Paper

Effects of Combustion Phasing, Relative Air-fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency

2006-04-03
2006-01-0229
In an effort to both increase engine efficiency and generate new, consistent, and reliable data useful for the development of engine concepts, a modern single-cylinder 4-valve spark-ignition research engine was used to determine the response of indicated engine efficiency to combustion phasing, relative air-fuel ratio, compression ratio, and load. Combustion modeling was then used to help explain the observed trends, and the limitations on achieving higher efficiency. This paper analyzes the logic behind such gains in efficiency and presents correlations of the experimental data. The results are helpful for examining the potential for more efficient engine designs, where high compression ratios can be used under lean or dilute regimes, at a variety of loads.
Technical Paper

The Performance of Future ICE and Fuel Cell Powered Vehicles and Their Potential Fleet Impact

2004-03-08
2004-01-1011
A study at MIT of the energy consumption and greenhouse gas emissions from advanced technology future automobiles has compared fuel cell powered vehicles with equivalent gasoline and diesel internal combustion engine (ICE) powered vehicles [1][2]. Current data regarding IC engine and fuel cell vehicle performance were extrapolated to 2020 to provide optimistic but plausible forecasts of how these technologies might compare. The energy consumed by the vehicle and its corresponding CO2 emissions, the fuel production and distribution energy and CO2 emissions, and the vehicle manufacturing process requirements were all evaluated and combined to give a well-to-wheels coupled with a cradle-to-grave assessment. The assessment results show that significant opportunities are available for improving the efficiency of mainstream gasoline and diesel engines and transmissions, and reducing vehicle resistances.
Technical Paper

An Experimental and Theoretical Study of the Contribution of Oil Evaporation to Oil Consumption

2002-10-21
2002-01-2684
Engine oil consumption is an important source of hydrocarbon and particulate emissions in automotive engines. Oil evaporating from the piston-ring-liner system is believed to contribute significantly to total oil consumption, especially during severe operating conditions. This paper presents an extensive experimental and theoretical study on the contribution of oil evaporation to total oil consumption at different steady state speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on coolant outlet temperature, oil volatility, and operating speed and load in a production spark ignition engine. Liquid oil distribution on the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder variables for oil evaporation, such as liner temperature and cylinder pressure, were measured. A multi-species cylinder liner oil evaporation model was developed to interpret the oil consumption data.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Alternative Fuels: Gas to Liquids as Potential 21st Century Truck Fuels

2000-12-04
2000-01-3422
Modern natural gas-to-liquids (GTL) conversion processes (Fischer-Tropsch liquid fuels (FTL)) offers an attractive means for making synthetic liquid fuels. Military diesel and jet fuels are procured under Commercial Item Description (CID) A-A-52557 (based on ASTM D 975) and MIL-DTL-83133/MIL-DTL-5624 (JP-8/JP-5), respectively. The Single Fuel Forward (single fuel in the battlefield) policy requires the use of JP-8 or JP-5 (JP-8/5). Fuel properties crucial to fuel system/engine performance/operation are identified for both old and new tactical/non-tactical vehicles. The 21st Century Truck program is developing technology for improved safety, reduced harmful exhaust emissions, improved fuel efficiency, and reduced cost of ownership of future military and civilian ground vehicles (in the heavy duty category having gross vehicle weights exceeding 8500 pounds).[1]
Technical Paper

Performance Scaling of Spark-Ignition Engines: Correlation and Historical Analysis of Production Engine Data

2000-03-06
2000-01-0565
This study examines the scaling between engine performance, engine configuration, and engine size and geometry, for modern spark-ignition engines. It focuses especially on design features that impact engine breathing. We also analyze historical trends to illustrate how changes in technology have improved engine performance. Different geometric parameters such as cylinder displacement, piston area, number of cylinders, number of valves per cylinder, bore to stroke ratio, and compression ratio, in appropriate combinations, are correlated to engine performance parameters, namely maximum torque, power and brake mean effective pressure, to determine the relationships or scaling laws that best fit the data. Engine specifications from 1999 model year vehicles sold in the United States were compiled into a database and separated into two-, three-, and four-valves-per-cylinder engine categories.
Technical Paper

Evaporation of In-Cylinder Liquid Fuel Droplets in an SI Engine: A Diagnostic-Based Modeling Study

1999-03-01
1999-01-0567
Liquid fuel behavior in the cylinder impacts SI engine HC emissions particularly during engine start-up. Inflow of liquid fuel into the cylinder is largely determined by the flow and temperature environment in the intake port. Subsequent evaporation of fuel droplets in the cylinder prior to impact on the piston and cylinder liner reduces the amount of liquid fuel in the cylinder that is likely to contribute to HC emission and is therefore important. In this study, measurements of liquid fuel droplet characteristics in the vicinity of the intake valve of a firing SI engine were analyzed to estimate the amount and spatial distribution of in-cylinder evaporation of liquid fuel prior to droplet impact on the cylinder liner or piston. A one-dimensional fuel droplet evaporation model was developed to predict the amount of fuel evaporation given measured fuel droplet sizes and velocities, intake port and valve temperatures during warm up, and cylinder geometry.
Technical Paper

Effect of Engine and Fuel Variables on Liquid Fuel Transport into the Cylinder in Port-Injected SI Engines

1999-03-01
1999-01-0563
Liquid fuel inflow into the cylinder is considered to be an important source of exhaust hydrocarbon (HC) emissions from automotive spark ignition engines. These liquid-fuel-caused emissions are increased significantly during the start up and subsequent warm-up period. This study analyzes the influence of several engine and injector design variables, and fuel parameters, on the in-cylinder liquid fuel behavior. The effect of the following parameters on the characteristics of the fuel droplets entering the cylinder was studied: Fuel volatility, injection timing, intake valve timing, injector type, spray geometry, and spray targeting in the intake port. A Phase Doppler Particle Analyzer (PDPA) was used in a single-cylinder flow visualization combustion engine to assess this in-cylinder liquid fuel behavior. Measurements of fuel droplet characteristics (size and velocity) were taken in selected locations in the vicinity of the intake valve during starting and warm up.
Technical Paper

Liquid Fuel Flow in the Vicinity of the Intake Valve of a Port-Injected SI Engine

1998-10-19
982471
Liquid fuel flow into the cylinder an important source of hydrocarbon (HC) emissions of an SI engine. This is an especially important HC source during engine warm up. This paper examines the phenomena that determine the inflow of liquid fuel through the intake valve during a simulated start-up procedure. A Phase Doppler Particle Analyzer (PDPA) was used to measure the size and velocity of liquid fuel droplets in the vicinity of the intake valve in a firing transparent flow-visualization engine. These characteristics were measured as a function of engine running time and crank angle position during four stroke cycle. Droplet characteristics were measured at 7 angular positions in 5 planes around the circumference of the intake valve for both open and closed-valve injection. Additionally the cone shaped geometry of the entering liquid fuel spray was visualized using a Planar Laser Induced Fluorescence (PLIF) setup on the same engine.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
Technical Paper

Combustion Chamber Deposit Effects on Hydrocarbon Emissions from a Spark-Ignition Engine

1997-10-01
972887
A dynamometer-mounted four-cylinder Saturn engine was used to accumulate combustion chamber deposits (CCD), using an additized fuel. During each deposit accumulation test, the HC emissions were continuously measured. The deposit thickness at the center of the piston was measured at the beginning of each day. After the 50 and 35-hour tests, HC emissions were measured with isooctane, benzene, toluene, and xylene, with the deposited engine, and again after the deposits had been cleaned from the engine. The HC emissions showed a rapid rise in the first 10 to 15 hours and stabilization after about 25 hours of deposit accumulation. The HC increase due to CCD accumulation accounted for 10 to 20% of the total engine-out HC emissions from the deposit build-up fuel and 10 to 30% from benzene, isooctane, toluene, and xylene, making CCDs a significant HC emissions source from this engine. The HC emissions stabilized long before the deposit thickness.
X