Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Assessing the Impact of a Novel TBC Material on Heat Transfer in a Spark Ignition Engine through 3D CFD-FEA Co-Simulation Routine

2022-03-29
2022-01-0402
Thermal barrier coatings (TBCs) have been of interest since the 1970s for application in internal combustion (IC) engines. Thin TBCs exhibit a temperature swing phenomenon wherein wall temperatures dynamically respond to the transient working-gas temperature throughout the engine cycle, thus reducing the temperature difference driving the heat transfer. Determining these varying wall temperatures is necessary to evaluate and study the effect of coatings on wall heat transfer. This study focuses on developing a 3D computational fluid dynamics (CFD)-finite element analysis (FEA) coupled simulation, or co-simulation, routine to determine the wall temperatures of a piston coated with a thin TBC layer subject to spark ignition combustion heat flux. A CONVERGE 3D-CFD model was used to simulate the combustion process in a single-cylinder, light-duty experimental spark ignition (SI) engine.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine

2021-09-05
2021-24-0096
In this work, a novel opposed piston architecture is proposed where one crankshaft rotates at twice the speed of the other. This results in one piston creating a 2-stroke profile and another with a 4-stroke profile. In this configuration, the slower piston operates in the 2-stroke CAD domain, while the faster piston completes 2 reciprocating cycles in the same amount of time (4-stroke). The key benefit of this cycle is that the 4-stroke piston increases the rate of compression and expansion (dV/dθ), which lowers the combustion-induced pressure rise rate after top dead center (crank angle location of minimum volume). Additionally, it lowers in-cylinder temperatures and pressures more rapidly, resulting in a lower residence time at high temperatures, which reduces residence time for thermal NOx formation and reduces the temperature differential between the gas and the wall, thereby reducing heat transfer.
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Technical Paper

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

2019-04-02
2019-01-1156
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

2019-04-02
2019-01-1208
Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
Technical Paper

A Look-Ahead Model Predictive Optimal Control Strategy of a Waste Heat Recovery-Organic Rankine Cycle for Automotive Application

2019-04-02
2019-01-1130
The Organic Rankine Cycle (ORC) has proven to be a promising technology for Waste Heat Recovery (WHR) systems in heavy duty diesel engine applications. However, due to the highly transient heat source, controlling the working fluid flow through the ORC system is a challenge for real time application. With advanced knowledge of the heat source dynamics, there is potential to enhance power optimization from the WHR system through predictive optimal control. This paper proposes a look-ahead control strategy to explore the potential of increased power recovery from a simulated WHR system. In the look-ahead control, the future vehicle speed is predicted utilizing road topography and V2V connectivity. The forecasted vehicle speed is utilized to predict the engine speed and torque, which facilitates estimation of the engine exhaust conditions used in the ORC control model.
Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

2019-01-15
2019-01-0079
Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
Technical Paper

Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine – Effects of Equivalence Ratio and Intake Boost

2018-04-03
2018-01-1252
Low-temperature gasoline combustion (LTGC) engines can deliver high efficiencies, with ultra-low emissions of nitrogen oxides (NOx) and particulate matter (PM). However, controlling the combustion timing and maintaining robust operation remains a challenge for LTGC engines. One promising technique to overcoming these challenges is spark assist (SA). In this work, well-controlled, fully premixed experiments are performed in a single-cylinder LTGC research engine at 1200 rpm using a cylinder head modified to accommodate a spark plug. Compression ratios (CR) of 16:1 and 14:1 were used during the experiments. Two different fuels were also tested, with properties representative of premium- and regular-grade market gasolines. SA was found to work well for both CRs and fuels. The equivalence ratio (ϕ) limits and the effect of intake-pressure boost on the ability of SA to compensate for a reduced Tin were studied. For the conditions studied, ϕ=0.42 was found to be most effective for SA.
Journal Article

Transient Power Optimization of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications

2017-03-28
2017-01-0133
This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
Journal Article

Increasing the Load Range, Load-to-Boost Ratio, and Efficiency of Low-Temperature Gasoline Combustion (LTGC) Engines

2017-03-28
2017-01-0731
Low-temperature gasoline combustion (LTGC) has the potential to provide gasoline-fueled engines with efficiencies at or above those of diesel engines and extremely low NOx and particulate emissions. Three key performance goals for LTGC are to obtain high loads, reduce the boost levels required for these loads, and achieve high thermal efficiencies (TEs). This paper reports the results of an experimental investigation into the use of partial fuel stratification, produced using early direct fuel injection (Early-DI PFS), and an increased compression ratio (CR) to achieve significant improvements in these performance characteristics. The experiments were conducted in a 0.98-liter single-cylinder research engine. Increasing the CR from 14:1 to 16:1 produced a nominal increase in the TE of about one TE percentage unit for both premixed and Early-DI PFS operation.
Technical Paper

Computationally Efficient Li-Ion Battery Aging Model for Hybrid Electric Vehicle Supervisory Control Optimization

2017-03-28
2017-01-0274
This paper presents the development of an electrochemical aging model of LiFePO4-Graphite battery based on single particle (SP) model. Solid electrolyte interphase (SEI) growth is considered as the aging mechanism. It is intended to provide both sufficient fidelity and computational efficiency required for integration within the HEV power management optimization framework. The model enables assessment of the battery aging rate by considering instantaneous lithium ion surface concentration rather than average concentration, thus enhancing the fidelity of predictions. In addition, an approximate analytical method is applied to speed up the calculation while preserving required accuracy. Next, this aging model are illustrated two applications. First is hybrid electric powertrain system model integration and simulation.
Technical Paper

Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy

2017-03-28
2017-01-0728
For lean or dilute, boosted gasoline compression-ignition engines operating in a low-temperature combustion mode, creating a partially stratified fuel charge mixture prior to auto-ignition can be beneficial for reducing the heat-release rate (HRR) and the corresponding maximum rate of pressure rise. As a result, partial fuel stratification (PFS) can be used to increase load and/or efficiency without knock (i.e. without excessive ringing). In this work, a double direct-injection (D-DI) strategy is investigated for which the majority of the fuel is injected early in the intake stroke to create a relatively well-mixed background mixture, and the remaining fuel is injected in the latter part of the compression stroke to produce greater fuel stratification prior auto-ignition. Experiments were performed in a 1-liter single-cylinder engine modified for low-temperature gasoline combustion (LTGC) research.
Journal Article

Boosted Premixed-LTGC / HCCI Combustion of EHN-doped Gasoline for Engine Speeds Up to 2400 rpm

2016-10-17
2016-01-2295
Previous work has shown that conventional diesel ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), can be used to enhance the autoignition of a regular-grade E10 gasoline in a well premixed low-temperature gasoline combustion (LTGC) engine, hereafter termed an HCCI engine, at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm and a 14:1 compression ratio. In the current work the effect of EHN on boosted HCCI combustion is further investigated with a higher compression ratio (16:1) piston and over a range of engine speeds (up to 2400 rpm). The results show that the higher compression ratio and engine speeds can make the combustion of a regular-grade E10 gasoline somewhat less stable. The addition of EHN improves the combustion stability by allowing combustion phasing to be more advanced for the same ringing intensity.
Technical Paper

Physics-Based Modeling and Transient Validation of an Organic Rankine Cycle Waste Heat Recovery System for a Heavy-Duty Diesel Engine

2016-04-05
2016-01-0199
This paper presents an Organic Rankine Cycle (ORC) system model for heavy-duty diesel (HDD) applications. The dynamic, physics-based model includes: heat exchangers for parallel exhaust and EGR circuits, compressible vapor working fluid, distribution and flow control valves, a high pressure pump, and a reservoir. A finite volume method is used to model the evaporator, and a pressure drop model is included to improve the accuracy of predictions. Experimental results obtained on a prototype ORC system are used for model calibration and validation. Comparison of predicted and measured values under steady-state conditions is pursued first, followed by the analysis of selected transient events. Validation reveals the model’s ability to track real-world temperature and pressure dynamics of the ORC system. Therefore, this modeling framework is suitable for future system design studies, optimization of ORC power generation, and as a basis for development of control-oriented ORC models.
Journal Article

Optimal Supervisory Control of the Series HEV with Consideration of Temperature Effects on Battery Fading and Cooling Loss

2016-04-05
2016-01-1239
This paper develops a methodology to optimize the supervisory controller for a heavy-duty series hybrid electric vehicle, with consideration of battery aging and cooling loss. Electrochemistrybased battery aging model is integrated into vehicle model. The side reaction, reductive electrolyte decomposition, is modeled to determine battery aging rate, and the thermal effect on this reaction rate is considered by Arrhenius Law. The resulting capacity and power fading is included in the system-level study. Sensitivity analysis shows that battery aging could cause fuel economy loss by 5.9%, and increasing temperature could improve fuel economy at any given state-of-health, while accelerating battery aging. Stochastic dynamic programming algorithm is applied to a modeled system to handle the tradeoff between two objectives: maximizing fuel economy and minimizing battery aging.
Journal Article

Model-Based Estimation of Vehicle Aerodynamic Drag and Rolling Resistance

2015-09-29
2015-01-2776
Commercial vehicles transport the majority of the inland freight in US and a significant number of passengers. They are large fuel consumers as they operate a large number of hours per day, pulling heavy loads. The increasing fuel price and the Green House Gas emission regulation have provided a strong impetus for new technologies capable of improving the commercial vehicle fuel economy. Among others, optimized powertrain control can improve the vehicle fuel economy, particularly if it is based on accurate information about the instantaneous load demand. Furthermore, model-based online vehicle parameter estimator is critical for implementation of an adaptive vehicle controller. While vehicle mass estimation has been successfully demonstrated, rolling resistance and aerodynamic drag estimation has not been fully explored yet. This paper examines this problem using model-based approach with a supervisory data extraction scheme.
Journal Article

The Performance of Multi-Cylinder Hydrogen / Diesel Dual Fuel Engine

2015-09-06
2015-24-2458
Hydrogen can be produced by electrolyzation with renewable electricity and the combustion products of hydrogen mixture include no CO, CO2 and hydrocarbons. In this study, engine performance with hydrogen / diesel dual fuel (hydrogen DDF) operation in a multi-cylinder diesel engine is investigated due to clarify advantages and disadvantages of hydrogen DDF operation. Hydrogen DDF operation under several brake power conditions are evaluated by changing a rate of hydrogen to total input energy (H2 rate). As H2 rate is increased, an amount of diesel fuel is decreased to keep a given torque constant. When the hydrogen DDF engine is operated with EGR, Exhaust gas components including carbon are improved or suppressed to same level as conventional diesel combustion. In addition, brake thermal efficiency is improved to 40% by increase in H2 rate that advances combustion phasing under higher power condition. On the other hand, NOx emission is much higher than one of conventional diesel engine.
Technical Paper

Influence of Directly Injected Gasoline and Porosity Fraction on the Thermal Properties of HCCI Combustion Chamber Deposits

2015-09-06
2015-24-2449
The limited operational range of low temperature combustion engines is influenced by near-wall conditions. A major factor is the accumulation and burn-off of combustion chamber deposits. Previous studies have begun to characterize in-situ combustion chamber deposit thermal properties with the end goal of understanding, and subsequently replicating the beneficial effects of CCD on HCCI combustion. Combustion chamber deposit thermal diffusivity was found to differ depending on location within the chamber, with significant initial spatial variations, but a certain level of convergence as equilibrium CCD thickness is reached. A previous study speculatively attributed these spatially dependent CCD diffusivity differences to either local differences in morphology, or interactions with the fuel-air charge in the DI engine. In this work, the influence of directly injected gasoline on CCD thermal diffusivity is measured using the in-situ technique based on fast thermocouple signals.
Technical Paper

The Combustion Improvements of Hydrogen / Diesel Dual Fuel Engine

2015-09-01
2015-01-1939
Hydrogen can be produced by electrolyzation with renewable electricity and reduce the combustion products from hydrogen mixture don't include CO, CO2 and unburned hydrocarbon components. We focused on these characteristics of hydrogen and high thermal efficiency of diesel engine and acquired the performance of hydrogen diesel dual fuel (DDF) engine. We changed proportion of hydrogen to total input energy and studied basic combustion and exhaust gas emission performance of hydrogen DDF operation. In addition, we studied the effects of advancement of diesel fuel injection timing and EGR on combustion behavior and improvement of NOx emission. Especially, EGR improved NOx emission from hydrogen DDF operation drastically without a decrease in thermal efficiency. Under hydrogen DDF operation with EGR, diesel fuel injection timing was advanced for stable combustion and it inhibited the degradation of thermal efficiency.
X