Refine Your Search

Topic

Author

Search Results

Technical Paper

SCV Chassis Performance Optimization Through Parametric Beam Modelling & Simulation

2021-10-01
2021-28-0183
In automotive product development, design and development of the chassis plays an important role since all the internal and external loads pass through the vehicle chassis. Durability, NVH, Dynamics as well as overall vehicle performance is dependent on the chassis structure. Even though passenger vehicle chassis has a ladder frame or a monocoque construction, small commercial vehicle chassis is a hybrid chassis with the cabin welded to the ladder frame. As mileage is critical for sale of SCVs, making a light-weight chassis is also important. This creates a trade-off between the performance and weight which needs to be optimized. In this study, a parametric beam model of the ladder frame & the cabin of the vehicle is created in COMSOL Multiphysics. The structure has been parameterized into the long member & crossmember geometry & sections. The model calculates the first 12 natural frequencies, global stiffness, and weight.
Technical Paper

Integrated Exhaust Manifold Design & Optimization of it through HCF and LCF Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0168
This paper discusses design and optimization process for the integration of exhaust manifold with turbocharger for a 3 cylinder diesel engine, simulation activities (CAE and CFD), and validation of manifold while upgrading to meet current BS6 emissions. Exhaust after-treatment system needs to be upgraded from a simple DOC (Diesel Oxidation Catalyst) to a complex DOC+sDPF (Selective catalytic reduction coated on Diesel Particulate Filter) to meet the BS6 emission norms for this engine. To avoid thermal losses and achieve a faster light-off temperature in the catalyst, the exhaust after-treatment (EATS) system needs to be placed close to the engine - exactly at the outlet of the turbocharger. This has given to challenges in packaging the EATS. The turbocharger in case of BS4 is placed near the 2nd cylinder of the engine, but this position will not allow placing the BS6 EATS.
Technical Paper

Improvement of Transient Response on a Downsized 4 Cylinder Engine for Automobile Application

2021-10-01
2021-28-0280
Ever since mainstreaming of automobiles, engineers are focusing on making the vehicles better by means of making them more efficient, powerful and less polluting. In this study, venues of improving low end torque via improvement in volumetric efficiency as well as proper selection of turbochargers is done. An in-depth analysis of gas dynamics with respect to valve timing is studied along with the AVL Boost 1D simulation. It was found that volumetric efficiency starts to improve when there is a reduction in exhaust - exhaust valve overlap. There is an improvement found in the fresh air ratio (lambda) as the residual gas content is reduced. After the selection of valve timing, turbocharger optimization is done with comparison between two turbine sizes. Along with turbocharger comparison, technology comparison is also done namely between normal electronic VGT (Variable Geometry Turbo) (bigger turbine) and electronic VGT coupled with waste gate (smaller turbine).
Technical Paper

Suspension Components Calculation at Concept Stage to Evaluate the Ride and Handling Characteristics

2021-09-22
2021-26-0082
Vehicle handing and ride are the critical attributes for customers while buying new passenger vehicle. Hence it is very important to design suspension which meets customer expectations. Often tuning of suspension parameters is very difficult at later stage like wheelbase, vehicle center of Gravity and other suspension parameters like roll center heights etc. A parametric mathematical model is built to study the effect of these parameters of vehicle handling and ride attributes at concept stage. These models are used to calculate the suspension ride rates, spring rates and Anti roll bar diameters for meeting target vehicle ride and handling performance. The model also calculates natural frequency of suspension and vehicle for understanding pitch and roll behaviours.
Technical Paper

Improvement in the Brake Pedal Feel Comfort for Light Commercial Vehicles with Hydraulic Brake System

2021-09-22
2021-26-0515
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel.
Technical Paper

Accurate Steering System Modelling for Vehicle Handling and Steering Performance Prediction Using CAE

2021-09-22
2021-26-0403
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. Vehicle execution assessment is critical in the vehicle development process, requiring exact vehicle steering system models. The effect of steering system stiffness is vital for vehicle handling, stability, and steering performance studies. The overall steering stiffness is usually not modeled accurately. Usually, torsion bar stiffness alone is considered in the modeling. The modeling of overall steering stiffness along with torsion bar stiffness is studied in this paper. Another major contributing factor to steering performance is steering friction. The steering friction is also often not considered properly.
Technical Paper

Steering Performance Calculator using Machine Learning Techniques

2021-09-22
2021-26-0415
In the conceptualization phase of vehicle development, for achieving reasonable dynamics performance, proper selection of steering system meeting all the requirements is necessary. This requires accurate prediction of major steering performance attributes like steering effort, steering torque, Turning Circle Diameter (TCD), %Ackerman and steering returnability. However, currently available models majorly depend on Computer Aided Engineering (CAE)-analysis or physical trials which requires system detailing and the same cannot be used for early prediction of the steering performances in the concept phase. This paper aims to address this deficiency with the help of a new steering performance calculator. In the calculator, performance attributes namely steering effort, steering torque, TCD and %-Ackerman has been modelled with engineering calculations and other attributes namely steering returnability&precision has been modelled through machine learning techniques.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

Optimization of the Bearing Oil Supply Concept of a High Power-Density Diesel Engine to Minimize Oil Pump Friction

2020-09-25
2020-28-0338
Reducing the mechanical friction of internal combustion engines could play a major role in improving the brake specific fuel consumption (BSFC). Hence, it is important to reduce the friction at every component and sub-system level. In the present work, the oil pump friction of a 1.5 liter 4-cylinder diesel engine is optimized by reducing the oil pump displacement volume by 20%. This could be achieved by adopting an optimized oil supply concept which could reduce the oil leakage through the main bearings and connecting rod bearings. A 1-dimensional oil flow simulation was carried out to predict the oil flow distribution across the engine for different speeds. The results indicate that the oil leakage through the main bearings and connecting rod bearings contribute to ~25% of the total oil flow requirement of the engine. In a conventional oil supply concept, the big-end bearing of each connecting rod is connected to the adjacent main bearing through an internal oil hole.
Journal Article

Thermal Analysis of Clutch Assembly Using Co-Simulation Approach

2020-08-18
2020-28-0024
Automotive clutches are rotary components which transmits the torque from the engine to the transmission. During the engagement, due to the difference in speed of the shafts the friction lining initially slips until it makes a complete engagement. Enormous amount of heat is generated due to the slippage of the friction lining, leading to poor shift quality and clutch failure. Depending on the road & traffic conditions, and frequency of engagement and disengagement of the clutch, it generates transient heating and cooling cycles. Hill fade test with maximum GVW conditions being the worst case scenario for the clutch. A test was conducted to understand the performance of the clutch, in which clutch burning was observed. The clutch lining got blackened and burning smell was perceived. The friction coefficient drops sharply to a point until it cannot transmit the torque required to encounter the slope. This further worsen clutch slippage and lead to more severe temperature rise.
Technical Paper

Thermodynamic Analysis of Turbocharger for a High Power Density Diesel Engine

2019-01-09
2019-26-0051
Passenger cars claim their presence in market by its pick up, top speed and maximum power of the engine. The study described in this paper is focused on improving the low-end performance of a 4-cylinder 1.6 L diesel engine while meeting the targeted maximum power. To meet the cause turbocharger works as an important element of the engine. A comparative study between regulated two stage turbocharger (R2S) and variable geometry turbocharger (VGT) shows that on a 4-cylinder engine VGT is superior by providing higher boost at 1000 engine rpm full load, than R2S, while in 3-cylinder (same displacement) the opposite effect can be seen. After simulations and iterations, it was confirmed that the in 4-cylinder the exhaust pulse cancellation were leading to a lesser exhaust energy at the turbine inlet. This pulse interaction leads to higher residual gas content which affects the low-end performance.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Optimization of Oil Separation Unit for Two Stage Turbocharged Engine

2018-07-09
2018-28-0066
In addition to performance target, recent stringent emission legislation and reduction in oil consumption are the major driving force for engine design and development. In this reference importance of crankcase ventilation has increased immensely and the manufacturers are bound to develop most efficient system with high oil trap efficiency. In crankcase ventilation system, the blow-by gases from the crankcase are routed to the intake manifold through Oil separator system. The oil separator task is to retain the oil part from the blow by gas and send it back to sump. Developing an oil separator for the engine studied here was very challenging considering double stage turbocharger which produces very fine mist of oil and is difficult to separate. The study shows that oil mist coming in blow by is of size 0.3 micron and lesser than it. The major contribution of these fine mists was from turbocharger.
Technical Paper

Development of Low Cost FEAD System with Stretch Fit Belt

2018-07-09
2018-28-0064
In Current scenario all Vehicle Manufacturer are looking towards cost effectiveness in their product development without compromising product quality and performance. With this reference, development of low cost FEAD (Front End Accessory Drive) system with stretch fit belt & idlers for multiple accessories has emerged as one of the alternative smart engineering solution against the FEAD with auto tensioner. The beauty of this low cost FEAD system is not only the cost saving but also the long lasting performance without affecting component life. In the current work, development of a low cost FEAD for 3 cylinder 1.5 litre diesel engine has been presented. It was one of the challenges to introduce stretch fit belt for 3 cylinder engine considering the high torsional vibration. The performance of this FEAD system was evaluated in terms of accessories pulley slip and belt flapping. The component durability was assessed both at engine as well as at vehicle level.
Technical Paper

Low Rolling Resistance Tires and Their Impact on Electric Vehicles

2017-07-10
2017-28-1941
This paper details the methodology used to show the importance of Low rolling resistance tires in Electric Vehicles. Fuel efficiency and range is paramount with most of the electric vehicle buyers. Although many people are now becoming aware of low rolling resistance tires but its development started way back in 1990’s. It is always challenging to achieve low rolling resistance in smaller tires of size 12 inch or 13 inch along meeting the other critical vehicle parameters such as ride and handling, NVH, durability and many more. The reduction in rolling resistance can also affect the traction properties of tires. In case of very low rolling resistance tires the traction will be very less but it can badly affect the other vehicle parameters. Selection of tires further depend upon the RWUP (Real World Usage Profile). It means the vehicle is targeted for which region and what is the condition of roads there.
Technical Paper

Sealing Prediction and Improvement at Cylinder Head & Block Interface under Thermo-Mechanical Loading involving Multi- Layer Steel Gasket

2015-04-14
2015-01-1743
An inadequate sealing of the combustion chamber gasket interface may have severe consequences on both the performance & emission of an engine. In this investigation, both the distribution of the contact pressure on the gasket and the stresses of the cylinder head at different loading conditions are explored and improved by modifying the design. A single cylinder gasoline engine cylinder head assembly has been analyzed by means of an uncoupled FEM simulation to find the sealing pressure of the multi-layer steel (MLS) gasket, strength & deformation of the components involved. The thermal loads are computed separately from CFD simulations of cylinder head assembly. The cylinder head assembly consisting of head, blocks, liner, cam shaft holder, bolts, gaskets, valve guides & valve seats, is one of the most complicated sub-assembly of an IC engine.
Journal Article

An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine

2015-01-14
2015-26-0051
Hydrogen is considered as one of the potential alternate fuel and when compared to other alternate fuels like CNG, LPG, Ethanol etc., it has unique properties due to absence of carbon. In the current work, Hydrogen engine of 2.5 L, four cylinder, spark ignited Turbocharged-Intercooled engine is developed for Mini Bus application. Multi-point fuel injection system is used for injecting the hydrogen in the intake manifold. Initially, boost simulation is performed to select the optimum compression ratio and turbocharger. The literature review has shown that in-order to get the minimum NOx emissions Hydrogen engines must be operated between equivalence ratios ranging from 0.5 to 0.6. In the present study, full throttle performance is conducted mainly with the above equivalence ratio range with minimum advance for Maximum Brake Torque (MBT) ignition timing. At each operating point, the performance, emissions and combustion parameters are recorded and analyzed in detail.
Technical Paper

Positive Difflock Stopper for Off Road Vehicles

2015-01-14
2015-26-0143
The purpose of a differential is to allow the wheels of an automobile to turn at different speeds so that it does not skid during turning. However when a vehicle runs on a slick or muddy surface (especially in Agricultural and constructional Field applications) that same feature causes the wheel with less traction to spin freely as this unit transmits power to the tire with least amount of traction. The function of a difflock is to lock the differential gears, by locking the differential, both the axles receive equal power and hence equal traction is available at both the tires. This Paper describes the positive locking of a differential by stopper, and also in detail the problems associated with its engagement and disengagement in tractors and construction equipment's. Additionally a concept for a difflock stopper which has been experimentally proven for tractors and construction equipment's is also discussed.
Technical Paper

Systematic Approach to Design Hand Controlled Parking Brake System for Passenger Car

2015-01-14
2015-26-0078
This paper is an attempt to compile a systematic approach which can be easily incorporated in the product development system used in the design and development of parking brake systems for passenger cars having rear drum brakes, which in turn can effectively reduce the lead time and give improved performance. The vehicle GVW, percentage gradient and maximum effort limits (as per IS 11852 - Part 3), tire and drum brake specifications were taken as front loading. This data is used for target setting of functional and engineering parameters, such as lever pull effort, lever ratio and angular travel of lever. Design calculations were performed to obtain theoretical values of critical parameters like lever effort and travel. The comparison between target and theoretical values give the initial confidence to the system engineer. Further, the outcome was taken to conceptualize the hard points of lever on vehicle for ergonomics.
X