Refine Your Search

Topic

Search Results

Technical Paper

Tackling Limited Labeled Field Data Challenges for State of Health Estimation of Lithium-Ion Batteries by Advanced Semi-Supervised Regression

2024-04-09
2024-01-2200
Accurate estimation of battery state of health (SOH) has become indispensable in ensuring the predictive maintenance and safety of electric vehicles (EVs). While supervised machine learning excels in laboratory settings with adequate SOH labels, field-based SOH data collection for supervised learning is hindered by EVs' complex conditions and prohibitive data collection costs. To overcome this challenge, a battery SOH estimation method based on semi-supervised regression is proposed and validated using field data in this paper. Initially, the Ampere integral formula is employed to calculate SOH labels from charging data, and the error of labeled SOH is reduced by the open-circuit voltage correction strategy. The calculation error of the SOH label is confirmed to be less than 1.2%, as validated by the full-charge test of the battery packs.
Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Intersection Signal Control Based on Speed Guidance and Reinforcement Learning

2023-04-11
2023-01-0721
As a crucial part of the intelligent transportation system, traffic signal control will realize the boundary control of the traffic area, it will also lead to delays and excessive fuel consumption when the vehicle is driving at the intersection. To tackle this challenge, this research provides an optimized control framework based on reinforcement learning method and speed guidance strategy for the connected vehicle network. Prior to entering an intersection, vehicles are focused on in a specific speed guidance area, and important factors like uniform speed, acceleration, deceleration, and parking are optimized. Conclusion, derived from deep reinforcement learning algorithm, the summation of the length of the vehicle’s queue in front of the signal light and the sum of the number of brakes are used as the reward function, and the vehicle information at the intersection is collected in real time through the road detector on the road network.
Technical Paper

Crack Detection and Section Quality Optimization of Self-Piercing Riveting

2023-04-11
2023-01-0938
The use of lightweight materials is one of the important means to reduce the quality of the vehicle, which involves the connection of dissimilar materials, such as the combination of lightweight materials and traditional steel materials. The riveting quality of self-piercing riveting (SPR) technology will directly affect the safety and durability of automobiles. Therefore, in the initial joint development process, the quality of self-piercing riveting should be inspected and classified to meet safety standards. Based on this, this paper divides the self-piercing riveting quality into riveting appearance quality and riveting section quality. Aiming at the appearance quality of riveting, the generation of cracks on the lower surface of riveting will seriously affect the riveting strength. The existing method of identifying cracks on the lower surface of riveting based on artificial vision has strong subjectivity, low efficiency and cannot be applied on a large scale.
Technical Paper

Effective Second Moment of Load Path (ESMLP) Method for Multiaxial Fatigue Damage and Life Assessment

2023-04-11
2023-01-0724
Time-domain and frequency domain methods are two common methods for fatigue damage and life assessment. The frequency domain fatigue assessment methods are becoming increasingly popular recently because of their unique advantages over the traditional time-domain methods. Recently, a series of moment of load path based multiaxial fatigue life assessment approaches have been developed. Among them, the most recently developed effective second moment of load path (ESMLP) approach demonstrates its potentials of conducting fatigue damage and life assessment accurately and efficiently. ESMLP can be used for fatigue analysis even without resorting to cycle counting because of its unique mathematical and physical properties, such as quadratic form in the kernel of the moment integral, rotationally invariant, and being proportional to damage. Developing a better parameter for frequency-domain analysis is the driving force behind the development of ESMLP as a new fatigue damage parameter.
Technical Paper

Neural Network Model to Predict the Thermal Operating Point of an Electric Vehicle

2023-04-11
2023-01-0134
The automotive industry widely accepted the launch of electric vehicles in the global market, resulting in the emergence of many new areas, including battery health, inverter design, and motor dynamics. Maintaining the desired thermal stress is required to achieve augmented performance along with the optimal design of these components. The HVAC system controls the coolant and refrigerant fluid pressures to maintain the temperatures of [Battery, Inverter, Motor] in a definite range. However, identifying the prominent factors affecting the thermal stress of electric vehicle components and their effect on temperature variation was not investigated in real-time. Therefore, this article defines the vector electric vehicle thermal operating point (EVTHOP) as the first step with three elements [instantaneous battery temperature, instantaneous inverter temperature, instantaneous stator temperature].
Research Report

Automated Vehicles, the Driving Brain, and Artificial Intelligence

2022-11-16
EPR2022027
Automated driving is considered a key technology for reducing traffic accidents, improving road utilization, and enhancing transportation economy and thus has received extensive attention from academia and industry in recent years. Although recent improvements in artificial intelligence are beginning to be integrated into vehicles, current AD technology is still far from matching or exceeding the level of human driving ability. The key technologies that need to be developed include achieving a deep understanding and cognition of traffic scenarios and highly intelligent decision-making. Automated Vehicles, the Driving Brain, and Artificial Intelligenceaddresses brain-inspired driving and learning from the human brain's cognitive, thinking, reasoning, and memory abilities. This report presents a few unaddressed issues related to brain-inspired driving, including the cognitive mechanism, architecture implementation, scenario cognition, policy learning, testing, and validation.
Journal Article

Machine Learning Approach for Constructing Wet Clutch Torque Transfer Function

2021-04-06
2021-01-0712
A wet clutch is an established component in a conventional powertrain. It also finds a new role in electrified systems. For example, a wet clutch is utilized to couple or decouple an internal combustion engine from an electrically-driven drivetrain on demand in hybrid electric vehicles. In some electrical vehicle designs, it provides a means for motor speed reduction. Wet clutch control for those new applications may differ significantly from conventional strategy. For example, actuator pressure may be heavily modulated, causing the clutch to exhibit pronounced hysteresis. The clutch may be required to operate at a very high slip speed for unforeseen behaviors. A linear transfer function is commonly utilized for clutch control in automating shifting applications, assuming that clutch torque is proportional to actuator pressure. However, the linear model becomes inadequate for enabling robust control when the clutch behavior becomes highly nonlinear with hysteresis.
Technical Paper

Machine Learning Techniques for Classification of Combustion Events under Homogeneous Charge Compression Ignition (HCCI) Conditions

2020-04-14
2020-01-1132
This research evaluates the capability of data-science models to classify the combustion events in Cooperative Fuel Research Engine (CFR) operated under Homogeneous Charge Compression Ignition (HCCI) conditions. A total of 10,395 experimental data from the CFR engine at the University of Michigan (UM), operated under different input conditions for 15 different fuel blends, were utilized for the study. The combustion events happening under HCCI conditions in the CFR engine are classified into four different modes depending on the combustion phasing and cyclic variability (COVimep). The classes are; no ignition/high COVimep, operable combustion, high MPRR, and early CA50. Two machine learning (ML) models, K-nearest neighbors (KNN) and Support Vector Machines (SVM), are compared for their classification capabilities of combustion events. Seven conditions are used as the input features for the ML models viz.
Technical Paper

Effect Analysis for the Uncertain Parameters on Self-Piercing Riveting Simulation Model Using Machine Learning Model

2020-04-14
2020-01-0219
Self-piercing rivets (SPR) are efficient and economical joining methods used in the manufacturing of lightweight automotive bodies. The finite element method (FEM) is a potentially effective way to assess the joining process of SPRs. However, uncertain parameters could lead to significant mismatches between the FEM predictions and physical tests. Thus, a sensitivity study on critical model parameters is important to guide the high-fidelity modeling of the SPR insertion process. In this paper, an axisymmetric FEM model is constructed to simulate the insertion process of the SPR using LS-DYNA/explicit. Then, several surrogate models are evaluated and trained using machine learning methods to represent the relations between selected inputs (e.g., material properties, interfacial frictions, and clamping force) and outputs (cross-section dimensions).
Technical Paper

A Study of Driver's Driving Concentration Based on Computer Vision Technology

2020-04-14
2020-01-0572
Driving safety is an eternal theme of the transportation industry. In recent years, with the rapid growth of car ownership, traffic accidents have become more frequent, and the harm it brings to human society has become increasingly serious. In this context, car safety assisted driving technology has received widespread attention. As an effective means to reduce traffic accidents and reduce accident losses, it has become the research frontier in the field of traffic engineering and represents the trend of future vehicle development. However, there are still many technical problems that need to be solved. With the continuous development of computer vision technology, face detection technology has become more and more mature, and applications have become more and more extensive. This article will use the face detection technology to detect the driver's face, and then analyze the changes in driver's driving focus.
Technical Paper

A Crack Detection Method for Self-Piercing Riveting Button Images through Machine Learning

2020-04-14
2020-01-0221
Self-piercing rivet (SPR) joints are a key joining technology for lightweight materials, and they have been widely used in automobile manufacturing. Manual visual crack inspection of SPR joints could be time-consuming and relies on high-level training for engineers to distinguish features subjectively. This paper presents a novel machine learning-based crack detection method for SPR joint button images. Firstly, sub-images are cropped from the button images and preprocessed into three categories (i.e., cracks, edges and smooth regions) as training samples. Then, the Artificial Neural Network (ANN) is chosen as the classification algorithm for sub-images. In the training of ANN, three pattern descriptors are proposed as feature extractors of sub-images, and compared with validation samples. Lastly, a search algorithm is developed to extend the application of the learned model from sub-images into the original button images.
Technical Paper

Machine Learning with Decision Trees and Multi-Armed Bandits: An Interactive Vehicle Recommender System

2019-04-02
2019-01-1079
Recommender systems guide a user to useful objects in a large space of possible options in a personalized way. In this paper, we study recommender systems for vehicles. Compared to previous research on recommender systems in other domains (e.g., movies or music), there are two major challenges associated with recommending vehicles. First, typical customers purchase fewer cars than movies or pieces of music. Thus, it is difficult to obtain rich information about a customer’s vehicle purchase history. Second, content information obtained about a customer (e.g., demographics, vehicle preferences, etc.) is also difficult to acquire during a relatively short stay in a dealership. To address these two challenges, we propose an interactive vehicle recommender system based a novel machine learning method that integrates decision trees and multi-armed bandits. Decision tree learning effectively selects important questions to ask the customer and encodes the customer's key preferences.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Personalized Driver Workload Estimation in Real-World Driving

2018-04-03
2018-01-0511
Drivers often engage in secondary in-vehicle activity that is not related to vehicle control. This may be functional and/or to relieve monotony. Regardless, drivers believe they can safely do so when their perceived workload is low. In this paper, we describe a data acquisition system and machine learning based algorithms to determine perceived workload. Data collected were from on-road driving in light and heavy traffic, and individual physiological measures were recorded while the driver also performed in-vehicle tasks. Initial results show how the workload function can be personalized to an individual, and what implications this may have for vehicle design.
Technical Paper

Driver Identification Using Multivariate In-vehicle Time Series Data

2018-04-03
2018-01-1198
All drivers come with a driving signature during a driving. By aggregating adequate driving data of a driver via multiple driving sessions, which is already embedded with driving behaviors of a driver, driver identification task could be treated as a supervised machine learning classification problem. In this paper, we use a random forest classifier to implement the classification task. Therefore, we collected many time series signals from 60 driving sessions (4 sessions per driver and 15 drivers totally) via the Controller Area Network. To reduce the redundancy of information, we proposed a method for signal pre-selection. Besides, we proposed a strategy for parameters tuning, which includes signal refinement, interval feature extraction and selection, and the segmentation of a signal. We also explored the performance of different types of arrangement of features and samples.
X