Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Local Thermomechanical Processing for Improving Formability of High Strength Aluminum Sheets

2022-03-29
2022-01-0244
Limited room temperature formability hinders the wide-spread use of high strength aluminum alloys in body parts. Forming at warm temperatures or from softer tempers are the current solutions. In this work, our approach is to start with age-hardened sheets from 7xxx and 6xxx family of alloys and improve their formability using local thermomechanical processing only in the regions demanding highest ductility in the forming processes. We achieved local formability improvements with friction stir processing and introduce another process named roller bending-unbending as a concept and showed its feasibility through finite element simulations. Initial results from FSP indicated significant deformation in the processed zones with minimal sheet distortion. FSP also resulted in dynamically recrystallized, fine grained (d < 5 μm) microstructures in the processed regions with textures significantly different from the base material.
Journal Article

Bake Hardening Behavior of DP, TBF, and PHS Steels with Ultimate Tensile Strengths Exceeding 1 GPa

2020-04-14
2020-01-0536
Third generation advanced high strength steels (AHSS) have been developed combining high strength and formability, allowing for lightweighting of vehicle structural components. These AHSS components are exposed to paint baking operations ranging in time and temperature to cure the applied paint. The paint baking treatment, combined with straining induced from part forming, may lead to increased in-service component performance due to a strengthening mechanism known as bake hardening. This study aims to quantify the bake hardening behavior of select AHSS grades. Materials investigated were press hardenable steels (PHS) 1500 and 2000; transformation induced plasticity (TRIP) aided bainitic ferrite (TBF) 1000 and 1200; and dual phase (DP) 1000. The number designations of these grades refer to minimum as-received ultimate tensile strengths in MPa. Paint baking was simulated using industrially relevant times and temperatures from 15 to 60 min and 120 to 200 °C, respectively.
Technical Paper

Design and Fabrication of a Formula SAE Undertray

2019-10-22
2019-01-2596
Aerodynamic packages can provide a significant performance benefit to Formula SAE cars, but design and development of a full aerodynamics package can be time-consuming and expensive. An undertray system can provide significant aerodynamic benefits at a lower cost than a full aerodynamics package with front and rear wings. To properly design and test an undertray, a robust program of computational fluid dynamics (CFD) analysis and verification is needed. CFD analysis can be challenging, especially for large external flow problems like that of a full car. Due to this difficulty, careful meshing and setup of simulations is necessary to ensure accurate results. Much like analysis, fabrication of an aerodynamics package for a Formula SAE car is difficult. Fiberglass and carbon fiber layup processes are commonly used, but are prone to a variety of issues, and can be costly and time-consuming. Therefore, a thorough layup schedule and a careful manufacturing process is necessary.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Hydrogen Embrittlement Susceptibility of Case Hardened Steel Fasteners

2018-04-03
2018-01-1240
This work establishes the relationship between core hardness, case hardness, and case depth on susceptibility to hydrogen embrittlement of case hardened steel fasteners. Such fasteners have a high surface hardness in order to create their own threads in a mating hole, and are commonly used to attach bracketry and sheet metal in automotive applications. While case hardened fasteners have been studied previously, there are currently no processing guidelines supported by quantitative data for fastener standards. Through sustained load embrittlement testing techniques, the susceptibility of case hardened steel tapping screws to internal and environmental hydrogen embrittlement is examined. Further characterization of the fastener samples through microhardness testing, microstructure review, and fracture surface examination allows the investigation of susceptibility thresholds. It is shown that core hardness is the primary consideration for susceptibility.
Technical Paper

The Role of Second Phase Hard Particles on Hole Stretchability of Two AA6xxx Alloys

2017-03-28
2017-01-0307
The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Journal Article

Application of Nano-Indentation Test in Estimating Constituent Phase Properties for Microstructure-Based Modeling of Multiphase Steels

2017-03-28
2017-01-0372
For multiphase advanced high strength steels (AHSS), the constituent phase properties play a crucial role in determining the overall mechanical behaviors. Therefore, it is important to accurately measure/estimate the constituent phase properties in the research of AHSS. In this study, a new nanoindentation-based inverse method that we developed was adopted in estimating the phase properties of a low alloy Quenching and Partitioning (Q&P) steel. A microstructure-based Finite Element (FE) model was also generated based on the Electron BackScatter Diffraction (EBSD) and Scanning Electron Microscopy (SEM) images of the Q&P steel. The phase properties estimated from nanoindentation were first compared with those estimated from in-situ High Energy X-Ray Diffraction (HEXRD) test and, then, employed in the generated FE model to examine whether they can be appropriately used as the input properties for the model.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Journal Article

Effects of Chemical Composition, Heat Treatment, and Microstructure in Splittable Forged Steel Connecting Rods

2015-04-14
2015-01-0522
Fracture split forged steel connecting rods are utilized in many new high performance automotive engines to increase durability. Higher strength levels are needed as the power density increases. Fracture splitting without plastic deformation is necessary for manufacturability. Metallurgical design is a key for achieving the required performance levels. Several medium carbon steels containing 0.07 wt pct P, 0.06 wt pct S and various amounts of Mn, Si, V, and N were produced by vacuum induction melting laboratory heats and hot working the cast ingots into plates. The plates were cooled at varying rates to simulate typical cooling methods after forging. Microstructures were generally ferrite and pearlite as evaluated by light optical and scanning electron microscopy. Mechanical properties were determined by standard tensile tests, high strain rate notched tensile tests, and Charpy V-notch impact tests to assess “splittability”.
Journal Article

Carbon and Manganese Effects on Quenching and Partitioning Response of CMnSi-Steels

2015-04-14
2015-01-0530
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys. Full austenitization followed by two-step Q&P treatments were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C. The results were compared to literature data for 0.2C-1.6Mn-1.6Si, 0.2-3Mn-1.6Si and 0.3-3Mn-1.6Si Q&P treated steels. The comparison showed that increasing the carbon content from 0.2 to 0.4 wt pct increased the ultimate tensile strength by 140 MPa per 0.1 wt pct C up to 1611 MPa without significantly decreasing ductility for the partitioning conditions used. Increased alloy carbon content did not substantially increase the retained austenite fractions. The best combinations of ultimate tensile strength and total elongation were obtained using short partitioning times.
Journal Article

Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

2014-04-01
2014-01-0791
A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.
Technical Paper

Effects of Constituent Properties on Performance Improvement of a Quenching and Partitioning Steel

2014-04-01
2014-01-0812
In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of material parameters of the constituent phases on the macroscopic tensile behavior of Q&P steel and to perform a computational material design approach for performance improvement. For this purpose, a model Q&P steel is first produced and various experiments are then performed to characterize the model steel. Actual microstructure-based model is generated based on the information from EBSD, SEM and nano-indentation test, and the material properties for the constituent phases in the model are determined based on the initial constituent properties from HEXRD test and the subsequent calibration of model predictions to tensile test results. The influence of various material parameters of the constituents on the macroscopic behavior is then investigated.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

2013-04-08
2013-01-0644
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility.
Journal Article

Characterization of Advanced High Strength Steel Sheets in View of the Numerical Prediction of Sidewall Curl

2013-01-21
2012-01-2326
In this study, a procedure for characterizing advanced high strength steel sheets is presented in view of determining the material parameters for constitutive models that can be used for accurate prediction of springback and sidewall curl. The mechanical properties of DP980 and TRIP780 sheets were obtained experimentally, and their cyclic tension-compression behaviour was modeled with the Chaboche nonlinear kinematic hardening model and the Yoshida-Uemori two-surface plasticity model that are implemented in LS-DYNA. The unloading moduli were determined from monotonic tension tests at various prestrain levels. An inverse approach based on linear and quadratic response surfaces created by Sequential Strategy with Domain Reduction (SRSM) methodology using LS-OPT software was used and investigated to identify specific material parameters in each constitutive model.
Technical Paper

Relationship between Material Properties and Local Formability of DP980 Steels

2012-04-16
2012-01-0042
A noticeable degree of inconsistent forming behaviors has been observed for the 1st generation advanced high strength steels (AHSS) in production, and they appear to be associated with the inherent microstructural-level inhomogeneities for various AHSS. This indicates that the basic material property requirements and screening methods currently used for the mild steels and high strength low alloys (HSLA) are no longer sufficient for qualifying today's AHSS. In order to establish more relevant material acceptance criteria for AHSS, the fundamental understandings on key mechanical properties and microstructural features influencing the local formability of AHSS need to be developed. For this purpose, in this study, DP980 was selected as model steels and eight different types of DP980 sheet steels were acquired from various steel suppliers.
Technical Paper

Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels

2012-04-16
2012-01-0530
Quenching & Partitioning (Q&P) is receiving increased attention as a novel Advanced High Strength Steel (AHSS) processing route as promising tensile properties of the “third generation” have been reported. The current contribution reports hole expansion ratios (HER) of Q&P steels and compares the values with HERs obtained for “conventional” AHSS processing routes such as austempering and Quench & Tempering (Q&T). Intercritically annealed C-Mn-Al-Si-P and fully austenitized C-Mn-Si microstructures were studied. Optimum combinations of tensile strength and HER were obtained for fully austenitized C-Mn-Si Q&P samples. Higher HER values were obtained for Q&P than for Q&T steels for similar tempering/partitioning temperatures. Austempering following intercritical annealing results in higher HER than Q&P at similar tensile strength levels. In contrast, Q&P following full austenitization results in higher hole expansion than austempering even at higher strength levels.
X