Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Formula 1 Race Car Aerodynamics: Understanding Floor Flow Structures and Why It Is a Key Component in Modern Racing

2024-04-09
2024-01-2078
This paper delves into the intricate realm of Formula 1 race car aerodynamics, focusing on the pivotal role played by floor flow structures in contemporary racing. The aerodynamic design of the floor of a Formula 1 car is a fundamental component that connects the flow structures from the front wing to the rear end of the car through the diffuser, thus significantly influencing the generation of lift and drag. In this work, CFD was used to predict the structure of the vortices and flow pattern underneath a Formula 1 car using a CAD model that mimicked the modern Red Bull Racing Team’s car in recent years. Through comprehensive analysis and simulation, a detailed understanding of the complex flow patterns and aerodynamic phenomena occurring beneath the floor of the car and its vicinity is presented.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

Numerical Modeling of Hydrogen Combustion Using Preferential Species Diffusion, Detailed Chemistry and Adaptive Mesh Refinement in Internal Combustion Engines

2023-08-28
2023-24-0062
Mitigating human-made climate change means cutting greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which causes climate change. One approach to achieving this is to move to a carbon-free economy where carbon emissions are offset by carbon removal or sequestration. Transportation is a significant contributor to CO2 emissions, so finding renewable alternatives to fossil fuels is crucial. Green hydrogen-fueled engines can reduce the carbon footprint of transportation and help achieve a carbon-free economy. However, hydrogen combustion is challenging in an internal combustion engine due to flame instabilities, pre-ignition, and backfire. Numerical modeling of hydrogen combustion is necessary to optimize engine performance and reduce emissions. In this work, a numerical methodology is proposed to model lean hydrogen combustion in a turbocharged port fuel injection (PFI) spark-ignition (SI) engine for automotive applications.
Technical Paper

Transmission Shifting Analysis and Model Validation for Medium Duty Vehicles

2023-04-11
2023-01-0196
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data.
Technical Paper

An Updated Comprehensive Chemical Kinetic Mechanism for Ammonia and its Blends with Hydrogen, Methanol, and N-Heptane

2023-04-11
2023-01-0204
Ammonia is a promising carbon-free alternative fuel for use in combustion systems. The main associated challenges are its relatively low reactivity and high NOx emissions compared to conventional fuels. Therefore, the combustion behaviour of ammonia and ammonia blends still needs to be better understood over a wide range of conditions. To this end, a comprehensive chemical kinetic mechanism C3MechV3.4, which is an update of C3MechV3.3, has been developed for improved predictions of the combustion of ammonia and ammonia blends. C3MechV3.4 has been validated using a wide range of experimental results for pure ammonia and ammonia/hydrogen, ammonia/methanol and ammonia/n-heptane blends. These validations target different data sets including ignition delay times, species profiles measured as a function of time, and/or temperature and laminar flame speeds over a wide range of conditions.
Technical Paper

The Impact of Fuel Injection Strategies and Compression Ratio on Combustion and Performance of a Heavy-Duty Gasoline Compression Ignition Engine

2022-08-30
2022-01-1055
Gasoline compression ignition using a single gasoline-type fuel has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high temperature Gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high temperature gasoline compression ignition combustion using EEE gasoline.
Technical Paper

Predictions of Urea Deposit Formation with CFD Using Autonomous Meshing and Detailed Urea Decomposition

2021-04-06
2021-01-0590
Urea-water solution (UWS) injection combined with Selective Catalytic Reduction (SCR) has developed as an effective method of meeting EPA and EURO NOx emissions regulations for diesel engines. Urea/SCR systems encompass a wide range of engine sizes, from light duty vehicles to large ship or power generation engines. One key challenge faced by modern urea/SCR systems is the formation of solid deposits of urea decomposition by-products that are difficult to remove. These deposits are proven to be detrimental to urea/SCR systems by decreasing ammonia uniformity, clogging injector nozzles and increasing pressure drop of the whole system. Urea deposits only form in a narrow range of wall temperatures and take many minutes to hours to form. The decomposition of urea into deposits begins with the formation of biuret and then progresses into the crystalline species cyanuric acid (CYA), ammelide, and ammeline.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library

2019-09-09
2019-24-0020
The Computational Chemistry Consortium (C3) is dedicated to leading the advancement of combustion and emissions modeling. The C3 cluster combines the expertise of different groups involved in combustion research aiming to refine existing chemistry models and to develop more efficient tools for the generation of surrogate and multi-fuel mechanisms, and suitable mechanisms for CFD applications. In addition to the development of more accurate kinetic models for different components of interest in real fuel surrogates and for pollutants formation (NOx, PAH, soot), the core activity of C3 is to develop a tool capable of merging high-fidelity kinetics from different partners, resulting in a high-fidelity model for a specific application. A core mechanism forms the basis of a gasoline surrogate model containing larger components including n-heptane, iso-octane, n-dodecane, toluene and other larger hydrocarbons.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Optimizing Thermal Efficiency of a Multi-Cylinder Heavy Duty Engine with E85 Gasoline Compression Ignition

2019-04-02
2019-01-0557
Gasoline compression ignition (GCI) using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation (EGR)) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of EGR appears more practical. Previous studies with 93 AKI gasoline demonstrated that the port and direct injection strategy exhibited the best performance, but the premature combustion event prevented further increase in the premixed gasoline fraction and efficiency.
Technical Paper

Towards Quantitative Prediction of Urea Thermo-Hydrolysis and Deposits Formation in Exhaust Selective Catalytic Reduction (SCR) Systems

2019-04-02
2019-01-0992
In order to assist in fast design cycle of Diesel engines selective catalytic reduction (SCR) exhaust systems, significant endeavor is currently being made to improve numerical simulation accuracy of urea thermo-hydrolysis. In this article, the achievements of a recently developed urea semi-detailed decomposition chemical scheme are assessed using three available databases from the literature. First, evaporation and thermo-hydrolysis of urea-water solution (UWS) single-droplets hanged on a thin thermocouple ring (127 μm) as well as on a thick quartz (275 μm), have been simulated at ambient temperature conditions ranging from 473K to 773K. It has been shown that the numerical results, in terms of evaporation rate and urea gasification, as well as droplet temperature history are very close to the experiments if the heat flux coming from the droplet support is properly accounted for.
Technical Paper

Mixing-Limited Combustion of Alcohol Fuels in a Diesel Engine

2019-04-02
2019-01-0552
Diesel-fueled, heavy-duty engines are critical to global economies, but unfortunately they are currently coupled to the rising price and challenging emissions of Diesel fuel. Public awareness and increasingly stringent emissions standards have made Diesel OEMs consider possible alternatives to Diesel, including electrification, fuel cells, and spark ignition. While these technologies will likely find success in certain market segments, there are still many applications that will continue to require the performance and liquid-fueled simplicity of Diesel-style engines. Three-way catalysis represents a possible low-cost and highly-effective pathway to reducing Diesel emissions, but that aftertreatment system has typically been incompatible with Diesel operation due to the prohibitively high levels of soot formation at the required stoichiometric fuel-air ratios. This paper explores a possible method of integrating three-way catalysis with Diesel-style engine operation.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Large-Eddy Simulations of Spray Variability Effects on Flow Variability in a Direct-Injection Spark-Ignition Engine Under Non-Combusting Operating Conditions

2018-04-03
2018-01-0196
Large-eddy Simulations (LES) have been carried out to investigate spray variability and its effect on cycle-to-cycle flow variability in a direct-injection spark-ignition (DISI) engine under non-reacting conditions. Initial simulations were performed of an injector in a constant volume spray chamber to validate the simulation spray set-up. Comparisons showed good agreement in global spray measures such as the penetration. Local mixing data and shot-to-shot variability were also compared using Rayleigh-scattering images and probability contours. The simulations were found to reasonably match the local mixing data and shot-to-shot variability using a random-seed perturbation methodology. After validation, the same spray set-up with only minor changes was used to simulate the same injector in an optically accessible DISI engine. Particle Image Velocimetry (PIV) measurements were used to quantify the flow velocity in a horizontal plane intersecting the spark plug gap.
Technical Paper

Standard Driving Cycles Comparison (IEA) & Impacts on the Ownership Cost

2018-04-03
2018-01-0423
A new type of approval procedure for light-duty vehicles, the Worldwide harmonized Light vehicles Test Procedure (WLTP), developed by an initiative of the United Nations Economic Commission for Europe, will come into force by the end of 2017. The current European type-approval procedure for energy consumption and CO2 emissions of cars, the New European Driving Cycle (NEDC), includes a number of tolerances and flexibilities that no longer accurately reflect state-of-the-art technologies. Indeed, on the basis of an analysis of real-world driving data from the German website spritmonitor.de, the ICCT concluded that the differences between official laboratory and real-world fuel consumption and CO2 values were around 7% in 2001. This discrepancy has been increasing continuously since then to around 30% in 2013, with notable differences found between individual manufacturers and vehicle models.
Technical Paper

Urea Deposit Predictions on a Practical Mid/Heavy Duty Vehicle After-Treatment System

2018-04-03
2018-01-0960
Urea/SCR systems have been proven effective at reducing NOx over a wide range of operating conditions on mid/heavy duty diesel vehicles. However, design changes due to reduction in the size of modern compact Urea/SCR systems and lower exhaust temperature have increased the possibility of urea deposit formation. Urea deposits are formed when urea in films and droplets undergoes undesirable secondary reactions and generate by-products such as ammelide, biuret and cyanuric Acid (CYA). Ammelide and CYA are difficult to decompose which lead to the formation of solid deposits on the surface. This phenomenon degrades the performance of the after treatment system by decreasing overall mixing efficiency, lowering de-NOx efficiency and increasing pressure drop. Therefore, mitigating urea deposits is a primary design goal of modern diesel after-treatment systems.
Technical Paper

Evaluation of Diesel Spray-Wall Interaction and Morphology around Impingement Location

2018-04-03
2018-01-0276
The necessity to study spray-wall interaction in internal combustion engines is driven by the evidence that fuel sprays impinge on chamber and piston surfaces resulting in the formation of wall films. This, in turn, may influence the air-fuel mixing and increase the hydrocarbon and particulate matter emissions. This work reports an experimental and numerical study on spray-wall impingement and liquid film formation in a constant volume combustion vessel. Diesel and n-heptane were selected as test fuels and injected from a side-mounted single-hole diesel injector at injection pressures of 120, 150, and 180 MPa on a flat transparent window. Ambient and plate temperatures were set at 423 K, the fuel temperature at 363 K, and the ambient densities at 14.8, 22.8, and 30 kg/m3. Simultaneous Mie scattering and schlieren imaging were carried out in the experiment to perform a visual tracking of the spray-wall interaction process from different perspectives.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
X