Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Application of Machine Learning to Engine Air System Failure Prediction

2024-04-09
2024-01-2007
With the capability of avoiding failure in advance, failure prediction model is important not only to end users, but also to the service engineers in vehicle industry. This paper proposes an approach based on anomaly detection algorithms and telematic data to predict the failure of the engine air system with Turbo charger. Firstly, the relationship between air system and all obtained features are analyzed by both physical mechanism and data-wise. Then, the features including altitude, air temperature, engine output power, and charger pressure are selected as the input of the model, with the sampling interval of 1 minute. Based on the selected features, the healthy state for each vehicle is defined by the model as benchmark. Finally, the ‘Medium surface’ is determined for specific vehicle, which is a hyperplane with the medium points of the healthy state located at, to detect the minor weakness symptom (sub-health state).
Technical Paper

Numerical Simulation of Class 8 Tractor Trailer Geometries and Comparison with Wind Tunnel Data

2024-04-09
2024-01-2533
This article analyzes the aerodynamic performance of Class 8 tractor-trailer geometries made available by the Environmental Protection Agency (EPA) using CFD simulation. Large Eddy Simulations (LES) were carried out with the CFD package, Simerics-MP+. A Sleeper tractor and a 53-foot box trailer configuration was considered. The configuration featured a detailed underbody, an open-grille under-hood engine compartment, mirrors, and the radiator and condenser. Multiple tractor-trailer variants were studied by adding aerodynamic surfaces to the baseline geometries. These include tank fairings and side extenders for the cabins, two types of trailer skirts, and a trailer tail. The effect of these devices towards reducing the overall vehicle drag was investigated. Mesh generation was carried out directly on the given geometry, without any surface modifications, using Simerics’ Binary-Tree unstructured mesher.
Technical Paper

3-D Multiphase Flow Simulation of Coolant Filling and Deaeration Processes in an Engine Coolant System

2024-01-16
2024-26-0310
The thermal performance of an engine coolant system is efficient when the engine head temperature is maintained within its optimum working range. For this, it is desired that air should not be entrapped in the coolant system which can lead to localized hot spots at critical locations. However, it is difficult to eliminate the trapped air pockets completely. So, the target is to minimize the entrapped air as much as possible during the coolant filling and deaeration processes, especially in major components such as the radiator, engine head, pump etc. The filling processes and duration are typically optimized in an engine test stand along with design changes for augmenting the coolant filling efficiency. However, it is expensive and time consuming to identify air entrapped locations in tests, decide on the filling strategy and make the design changes in the piping accordingly.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions.
Technical Paper

Adjoint-Based Model Tuning and Machine Learning Strategy for Turbulence Model Improvement

2022-03-29
2022-01-0899
As turbulence modeling has become an indispensable approach to perform flow simulation in a wide range of industrial applications, how to enhance the prediction accuracy has gained increasing attention during the past years. Of all the turbulence models, RANS is the most common choice for many OEMs due to its short turn-around time and strong robustness. However, the default setting of RANS is usually benchmarked through classical and well-studied engineering examples, not always suitable for resolving complex flows in specific circumstances. Many previous researches have suggested a small tuning in turbulence model coefficients could achieve higher accuracy on a variety of flow scenarios. Instead of adjusting parameters by trial and error from experience, this paper introduced a new data-driven method of turbulence model recalibration using adjoint solver, based on Generalized k-ω (GEKO) model, one variant of RANS.
Technical Paper

Advanced Tire to Vehicle Connectivity for Safety and Fuel Economy of Automated Heavy-Duty Trucks

2022-03-29
2022-01-0881
Safety, fuel economy and uptime are key requirements for the operation of heavy-duty line-haul trucks within a fleet. With the penetration of connectivity and automation technologies, energy optimal and safe operation of the trucks are further improved through Advanced Driver Assistance System (ADAS) features and automated technologies as in truck platooning. Understanding the braking capability of the vehicle is very important for optimal ADAS and platooning control system design and integration. In this paper, the importance of tire connectivity and tire conditions on truck stopping distance are demonstrated through testing. The test data is further utilized to develop tire models for integration in an optimal vehicle automation for platooning. New ways to produce and use the tire related information in real-time optimal control of platooning trucks are proposed and the contribution of tire information in fuel economy is quantified through simulations.
Journal Article

An Evaluation of an Unhealthy Part Identification Using a 0D-1D Diesel Engine Simulation Based Digital Twin

2022-03-29
2022-01-0382
Commercial automotive diesel engine service and repair, post a diagnostic trouble code trigger, relies on standard troubleshooting steps laid down to identify or narrow down to a faulty engine component. This manual process is cumbersome, time-taking, costly, often leading to incorrect part replacement and most importantly usually associated with significant downtime of the vehicle. Current study aims to address these issues using a novel in-house simulation-based approach developed using a Digital Twin of the engine which is capable of conducting in-mission troubleshooting with real world vehicle/engine data. This cost-effective and computationally efficient solution quickly provides the cause of the trouble code without having to wait for the vehicle to reach the service bay. The simulation is performed with a one-dimensional fluid dynamics, detailed thermodynamics and heat transfer-based diesel engine model utilizing the GT-POWER engine performance tool.
Technical Paper

An Automated Workflow for Efficient Conjugate Heat Transfer Analysis of a Diesel Engine

2021-04-06
2021-01-0402
The internal combustion engine’s performance is affected by in-cylinder combustion processes and heat transfer rates through the combustion chamber walls. Hot spots may affect the reliability and durability of the engine components. Design of efficient and effective coolant systems requires accurate accounting of the heat fluxes into and out of the solid parts during the engine operation. The need to assess the engine’s performance early in the design process has motivated the use of a computational approach to predict such data. A more accurate representation of the engine’s operation is obtained by coupling the thermal, flow, and combustion analysis of the various components, such as the combustion chamber, ports, engine block, and its cooling system. Typically, a stand-alone CFD simulation does not capture the complex nature of the problem, and the manual transfer of data between multiple analyses may lead to an onerous or error-prone workflow requiring multiple user interventions.
Journal Article

Advancing Platooning with ADAS Control Integration and Assessment Test Results

2021-04-06
2021-01-0429
The application of cooperative adaptive cruise control (CACC) to heavy-duty trucks known as truck platooning has shown fuel economy improvements over test track ideal driving conditions. However, there are limited test data available to assess the performance of CACC under real-world driving conditions. As part of the Cummins-led U.S. Department of Energy Funding Opportunity Announcement award project, truck platooning with CACC has been tested under real-world driving conditions and the results are presented in this paper. First, real-world driving conditions are characterized with the National Renewable Energy Laboratory’s Fleet DNA database to define the test factors. The key test factors impacting long-haul truck fuel economy were identified as terrain and highway traffic with and without advanced driver-assistance systems (ADAS).
Technical Paper

Quantification of Platooning Fuel Economy Benefits across United States Interstates Using Closed-Loop Vehicle Model Simulation

2021-02-25
2021-01-5028
Evaluation of the platooning legislative space suggests a limited near-term opportunity for autonomous vehicles as currently only nine states have platooning and autonomous favorable legislations. An extensive closed-loop vehicle model simulation was conducted to quantify two-truck platooning fuel economy entitlement benefits across all United States (US) interstate routes (I-xx) spanning over 40,000 miles as compared to a single truck. A simultaneous study was carried out to identify the density of Class 8 heavy-duty trucks on these interstates, using the Freight Analysis Framework (FAF) 4 database. These two studies were combined to ascertain interstates that foresee the least fuel consumption due to platooning and thus identifying states with the most platooning benefits. Identification of states with most platooning benefits provides realistic data to push for autonomous driving and platooning legislations.
Technical Paper

Impact of Using Low Thermal Mass Turbine Housing on Exhaust Temperature with Implication on Aftertreatment Warm-Up Benefit for Emissions Reduction

2020-09-02
2020-01-5083
The present study examines the impact of using low thermal mass (LTM) turbine housing designs on the transient characteristics of the turbine outlet temperature for a light-duty diesel standard certification cycle (FTP75). For a controlled exhaust flow, the turbine outlet temperature will directly determine the impact on an aftertreatment system warm-up from a cold state, typical of engine-off and engine idling conditions. The performance of the aftertreatment system such as a Selective Catalytic Reduction (SCR) system is highly dependent on how quickly it warms up to its desirable temperature to be able to convert the harmful oxides of Nitrogen (NOx) to gaseous Nitrogen. Previous works have focused on mostly insulating the exhaust manifold and turbine housing to conserve the heat going into the aftertreatment system. The use of LTM turbine housing has not been previously considered as a means for addressing this requirement.
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

Flux Residue and Migration in Charge Air-Cooled Engines

2020-03-27
2019-01-5083
Traditionally, most charge air coolers (CACs) have been constructed using the Nocolok aluminum brazing process. The Nocolok process uses flux, some of which remains after the manufacturing process, and migrates through the intake tract to the engine during normal use. This migration and deposition on engine components can cause a variety of issues with engine operation. Currently the only alternative to Nocolok brazed CACs for engines sensitive to flux migration is vacuum brazing, which comes at a significant price increase. In the effort to reduce cost and increase efficiency, there is interest in whether a Nocolok brazed CAC with a reduced amount of flux residue can be successfully applied to flux-sensitive engines.
Technical Paper

Multi-Domain Optimization for Fuel Economy Improvement of HD Trucks

2019-04-02
2019-01-0312
Fuel usage negatively impacts the environment and is a significant portion of operational costs of moving freight globally. Reducing fuel consumption is key to lessening environmental impacts and maximizing freight efficiency, thereby increasing the profit margin of logistic operators. In this paper, fuel economy improvements of a cab-over style 49T heavy duty Foton truck powered by a Cummins 12-liter engine are studied and systematically applied for the China market. Most fuel efficiency improvements are found within the vehicle design when compared to opportunities available at the engine level. Vehicle design (improved aerodynamics), component selection/matching (low rolling resistance tires), and powertrain electronic features integration (shift schedule/electronic trim) offer the largest opportunities for lowering fuel consumption.
Technical Paper

A Thermal Electric Two-Way Coupled Battery Pack Model for an All Electric VW Motorsport Racer

2019-04-02
2019-01-0593
This paper presents a thermal electric two-way coupled li-ion battery pack model for an all-electric VW motorsport racer. It starts from the hybrid pulse power characterization (HPPC) test data at different state of charge (SoC) and temperature levels. Such information is used for cell level battery equivalent circuit model (ECM) parameter identification. Multiple cell ECMs are connected in series to create a module ECM. Battery thermal performance of the module is simulated first by computational fluid dynamics (CFD) for the module. Then, a thermal reduced order model (ROM) is created out of the CFD solution. The thermal ROM is then two-way coupled with the battery module ECM to form a complete battery module model. Multiple module models are connected to create a battery pack model. The complete pack model is then exported into Simulink for validation and simulation.
Technical Paper

EGR Cooler Field Return Rate Evaluation Based on Product and Application Variation

2019-04-02
2019-01-0915
The automotive industry drives some of the most stringent product requirements to ensure long product life and customer satisfaction. To demonstrate compliance with these requirements new and more accurate evaluation methods are needed. Thermal fatigue life in EGR coolers for heavy duty diesel applications have historically been a critical focus for engine OEMs. Being able to accurately evaluate product return rates due to thermal fatigue failures gives the OEM confidence that all end users will be satisfied, and allows program management to properly make fiscal decisions. Additionally, weight and cost optimization can be conducted with greater confidence. This is accomplished by accounting for product variation and application variation in thermal fatigue life evaluations. Including these variations requires a simplified numerical method to calculate product life, as tens of thousands of samples will be run through the analysis to represent real life random variation.
Technical Paper

Cooling Fan Selection in Power Car Application Using CFD and FEA Analysis

2019-04-02
2019-01-0900
This paper describes the methodology used to select an application-based fan that has optimum operating characteristics in terms of cooling air flow rate, fan power, and noise. The selected fan is then evaluated for structural strength. To evaluate different fans, complete rail coach under-hood simulations were carried out using steady-state 3D computational fluid dynamics (CFD) approach. These simulations considered an actual, highly non-uniform flow field. For each fan option, fan power, air flow rate, and surface acoustic power was evaluated. Pressure profiles on the fan blades were studied to assess the effect of non-uniform downstream air passage designs. Surface acoustic power was calculated using broadband noise source (BNS) model in ANSYS Fluent®. Surface pressure profiles over fan blades imported from 3D CFD were used in finite element analysis (FEA) in ANSYS. Analyses were carried out for blade linear and non-linear properties.
Technical Paper

Diagnostics of Field-Aged Three-Way Catalyst (TWC) on Stoichiometric Natural Gas Engines

2019-04-02
2019-01-0998
Three-way catalysts have been used in a variety of stoichiometric natural gas engines for emission control. During real-world operation, these catalysts have experienced a large number of temporary and permanent deactivations including thermal aging and chemical contamination. Thermal aging is typically induced either by high engine-out exhaust temperatures or the reaction exotherm generated on the catalysts. Chemical contamination originates from various inorganic species such as Phosphorous (P) and Sulfur (S) that contain in engine fluids, which can poison and/or mask the catalyst active components. Such deactivations are quite difficult to simulate under laboratory conditions, due to the fact that multiple deactivation modes may occur at the same time in the real-world operations. In this work, a set of field-aged TWCs has been analyzed through detailed laboratory research in order to identify and quantify the real-world aging mechanisms.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

2019-01-15
2019-01-0026
Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
X