Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Impact Dependent Properties of Advanced and Ultra High Strength Steels

2007-04-16
2007-01-0342
The automotive industry is pursuing significant cost competitive efforts to reduce vehicle weight while maintaining or improving durability and impact performance. One such effort for the body shell structure is the utilization of advanced and ultra high strength steels (AHSS and UHSS) using the existing automotive manufacturing infrastructure. Common AHSS and UHSS steels include Dual Phase (DP), Transformation Induced Plasticity (TRIP), Partial Martensitic (PM) and others. The use of these multiphase high strength steels for impact dependent components has resulted in the need for further material characterization in order to better predict impact performance and guide new material development. This paper addresses the material properties and microstructural influences on impact behavior of advanced and ultra high strength steels through the use of laboratory tests and component level testing.
Technical Paper

The Effects of Hydroforming on the Mechanical Properties and Crush Behaviors of Aluminum Tubes

2007-04-16
2007-01-0986
The effect of hydroforming on the mechanical properties and dynamic crush behaviors of tapered aluminum 6063-T4 tubes with octagonal cross section are investigated by experiments. First, the thickness profile of the hydroformed tube is measured by non-destructive examination technique using ultrasonic thickness gauge. The effect of hydroforming on the mechanical properties of the tube is investigated by quasi-static tensile tests of specimens prepared from different regions of the tube based on the thickness profile. The effect of hydroforming on the dynamic crush behaviors of the tube is investigated by axial crush tests under dynamic loads. Specimens and tubes are tested in two different heat treatment conditions: hydroformed-T4 (as-received) and T6. The results of the quasi-static tensile tests for the specimens in hydroformed-T4 condition show different amounts of work hardening depending on the regions, which the specimens are prepared from.
Technical Paper

DOE Analysis of Factors Affecting Ultimate Strength of Multiple Resistance Spot Welded Joints

2007-04-16
2007-01-1661
More than 200 tensile-shear resistance spot welded specimens were produced and tested to analyze the effect of spot weld spacing, weld size, sheet thickness, and adhesive on the ultimate strength of joints made from a mild hot dip galvannealed steel and an unexposed quality hot dip galvannealed 590 MPa minimum tensile strength dual phase steel (DP590). The geometric layout parameters were analyzed by a design of experiment (DOE) approach. The analysis showed that weld size is a primary factor affecting the strength of the joints for a given material. It was also determined that structural adhesive created a large relative strengthening for joints made from the mild steel. Interactions of the geometrical factors are also presented.
Technical Paper

Shear Fracture in Advanced High Strength Steels

2006-04-03
2006-01-1433
Significant efforts are underway in the automotive industry to reduce vehicle weight while maintaining performance and cost competitiveness. One such effort is the use of advanced high strength steels (AHSS) as the primary body materials method to meet weight targets using the existing automotive manufacturing infrastructure. Issues related to the stamping of AHSS are well known, and significant hurdles still exist for successful implementation. Due to material strength and mechanical behavior, springback is a major hurdle in forming AHSS. While working to form AHSS parts and reduce springback, press shops have encountered a new fracture type. The term shear fracture or local elongation has been loosely used to specify these fractures, which occur at part radii under low strains in multiphase AHSS. These fractures cause design limitations and manufacturing uncertainty.
Technical Paper

Improving Direct Vehicle Exhaust Flow Measurement

2005-04-11
2005-01-0686
Measuring vehicle exhaust volumetric flow rate accurately and precisely is critical in calculating the correct vehicle modal and bag mini-diluter exhaust emission constituent masses. It is also instrumental in engine calibration practices. Currently, DaimlerChrysler's Emission and Certification Lab in Auburn Hills, Michigan utilizes constant volume sampling bag systems to certify vehicles but the automotive technological trend is heading toward the bag mini-diluter for greater precision at low emission levels. The bag mini-diluters, as well as the modal sampling system, used extensively in vehicle development testing, rely on exhaust flow rate measurement by means of a direct vehicle exhaust flow meter named E-Flow. The E-Flow has few limitations such as flow profile instability at low idle flow rates and reaction to resonating pressure waves in the exhaust system.
Technical Paper

FlexMetal Catalyst Technologies

2005-04-11
2005-01-1111
A new family of automotive three-way conversion (TWC) catalyst technologies has been developed using a Precision Metal Addition (PMA) process. Precious metal (PGM) fixation onto the support occurs during the PMA step when the PGM is added to the slurry immediately prior to application to the monolith substrate. PMA slurries can be prepared with high precision and the slurry manufacturing process is greatly simplified. Further, it has been found that with the use of new generation washcoat (WC) materials, the same WC composition can be used for all three PGMs - Pt, Pd & Rh. Negative interactions between Pd and Rh in the same WC layer do not occur, providing advantages over older technologies. Thus, new WC compositions coupled with the PMA process offers precious metal flexibility. This FlexMetal family of catalyst technologies includes single layer Pd-only, Pd/Rh and Pt/Rh and dual layer bi-metal Pd/Rh and Pt/Rh and tri-metal Pt/Pd/Rh.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

Predicted vs. Actual Compensation in a Stamping Die

2001-10-16
2001-01-3108
Traditional methods used to produce a die set (from developing initial machining cutter paths through finalized die tryout to produce a part that meets design intent) begin with draw simulation and development. It is here, traditionally, that scientific evaluation of actual metal stretch and theoretical ideals end. In past programs, a designed part would be simulated for stretch and a development model created to include various die compensations (i.e. springback, overcrown, etc.) based on past experience for area and amount. At this point, the die is cut and undergoes a metamorphosis through die tryout to finally produce a quality part. This is currently an open loop system. This paper will focus on the differences in the predicted way the die should look and the actual outcome (after part buyoff).
Technical Paper

Shunt Piezo Damping of a Radiating Panel

2001-04-30
2001-01-1576
The performance of shunt piezo damping is demonstrated by adding damping to the first mode of a plate with the dimensions of 28 by 38 cm and thickness of 0.8 mm. A small 1 by 2 inch piezoelectric patch with the thickness of 10 mil is bonded to the plate at a location where strain due to the first mode of vibration is high. The peizo is shunted with a resistance-inductance (RL) circuit, tuned to the first resonance frequency of the plate at 38 Hz. The plate is excited at its first natural frequency and the power spectrums of the acceleration at the center of the plate with and without the damping treatment were measured. These measurements showed that the shunt piezo damping treatment tuned to the first mode added an appreciable amount of damping to that mode.
Technical Paper

Engine Internal Dynamic Force Identification and the Combination with Engine Structural and Vibro-Acoustic Transfer Information

2001-04-30
2001-01-1596
The vibration-generating mechanisms inside an engine are highly non-linear (combustion, valve operation, hydraulic bearing behavior, etc.). However, the engine structure, under the influence of these vibration-generating mechanisms, responds in a highly linear way. For the development and optimization of the engine structure for noise and vibration it is beneficial to use fast and ‘simple’ linear models, like linear FE-models, measured modal models or measured FRF-models. All these models allow a qualitative assessment of variants without excitation information. But, for true optimization, internal excitation spectra are needed in order to avoid that effort is spent to optimize non-critical system properties. Unfortunately, these internal excitation spectra are difficult to measure. Direct measurement of combustion pressure is still feasible, but crank-bearing forces, piston guidance forces etc. can only be identified indirectly.
Technical Paper

Comparison of Frontal Crashes in Terms of Average Acceleration

2000-03-06
2000-01-0880
The paper presents a comparison between the acceleration pulses of vehicle-to-vehicle crash tests with those of different single-vehicle crash tests. The severity of the full frontal rigid barrier test is compared with that of the vehicle- to-vehicle crash test based on average acceleration and time-to-zero-velocity. Based on this a 30mph full frontal rigid barrier test is found equivalent to a 41mph vehicle-to-vehicle crash. A reduced speed of 22mph for full frontal rigid barrier test is found to represent vehicle-to- vehicle crashes with 50%-100% overlap, with each vehicle travelling at 30mph. The paper also presents a comparison of the acceleration pulses from different crash tests based on the pulse shape and the pulse phase cross-correlation. None of the single-vehicle crash tests have been found to resemble vehicle-to-vehicle crashes in terms of the pulse shape and the pulse phase.
Technical Paper

Optimization of Single-Point Frontal Airbag Fire Threshold

2000-03-06
2000-01-1009
The relationship of the airbag fire-distribution as a function of impact velocity to the airbag fire-time is studied through the use of an optimization procedure. The study is conducted by abstracting the sensor algorithm and its associated constraints into a simple mathematical formulation. An airbag fire objective function is constructed that integrates the fire-rate and fire-time requirements. The function requires the input of a single acceleration time history; it produces an output depending on the airbag fire condition. Numerical search of the optimal fire threshold curve is achieved through parameterizing this curve and applying a modified simplex search optimization algorithm that determines the optimal threshold function parameters without computing the complete objective function in the parameter space. Numerical results are given to show the effectiveness and potential difficulties with the automatic search scheme.
X