Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Effect of Turbulence on HCCI Combustion

2007-04-16
2007-01-0183
This paper presents large eddy simulation (LES) and experimental studies of the combustion process of ethanol/air mixture in an experimental optical HCCI engine. The fuel is injected to the intake port manifolds to generate uniform fuel/air mixture in the cylinder. Two different piston shapes, one with a flat disc and one with a square bowl, were employed to generate different in-cylinder turbulence and temperature field prior to auto-ignition. The aim of this study was to scrutinize the effect of in-cylinder turbulence on the temperature field and on the combustion process. The fuel tracer, acetone, is measured using laser induced fluorescence (LIF) to characterize the reaction fronts, and chemiluminescence images were recorded using a high speed camera, with a 0.25 crank angle degree resolution, to further illustrate the combustion process. Pressure in the cylinder is recorded in the experiments.
Technical Paper

Numerical and Experimental Investigation of Turbulent Flows in a Diesel Engine

2006-10-16
2006-01-3436
This paper presents a study of the turbulence field in an optical diesel engine operated under motored conditions using both large eddy simulation (LES) and Particle Image Velocimetry (PIV). The study was performed in a laboratory optical diesel engine based on a recent production engine from VOLVO Car. PIV is used to study the flow field in the cylinder, particularly inside the piston bowl that is also optical accessible. LES is used to investigate in detail the structure of the turbulence, the vortex cores, and the temperature field in the entire engine, all within a single engine cycle. The LES results are compared with the PIV measurements in a 40 × 28 mm domain ranging from the nozzle tip to the cylinder wall. The LES grid consists of 1283 cells. The grid dynamically adjusts itself as the piston moves in the cylinder so that the engine cylinder, including the piston bowl, is described by the grid.
Technical Paper

Effect of Turbulence and Initial Temperature Inhomogeneity on Homogeneous Charge Compression Ignition Combustion

2006-10-16
2006-01-3318
A 0.5 liter optical HCCI engine firing a mixture of n-heptane (50%) and iso-octane (50%) with air/fuel ratio of 3 is studied using large eddy simulation (LES) and laser diagnostics. Formaldehyde and OH LIF and in-cylinder pressure were measured in the experiments to characterize the ignition process. The LES made use of a detailed chemical kinetic mechanism that consists of 233 species and 2019 reactions. The auto-ignition simulation is coupled with LES by the use of a renormalized reaction progress variable. Systematic LES study on the effect of initial temperature inhomogeneity and turbulence intensity has been carried out to delineate their effect on the ignition process. It was shown that the charge under the present experimental condition would not be ignited without initial temperature inhomogeneity. Increasing temperature inhomogeneity leads to earlier ignition whereas increasing turbulence intensity would retard the ignition.
Technical Paper

Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle

2005-04-11
2005-01-0153
This study applies a state feedback based Closed-Loop Combustion Control (CLCC) using Fast Thermal Management (FTM) on a multi cylinder Variable Compression Ratio (VCR) engine. At speeds above 1500 rpm is the FTM's bandwidth broadened by using the VCR feature of this engine, according to a predefined map, which is a function of load and engine speed. Below 1500 rpm is the PID based CLCC using VCR applied instead of the FTM while slow cylinder balancing is effectuated by the FTM. Performance of the two CLCC controllers are evaluated during an European EC2000 drive cycle, while HC, CO and CO2 emissions are measured online by a Fast Response Infrared (FRI) emission equipment. A load and speed map calculated for an 1.6L Opel Astra is used to get reference values for the dynamometer speed and the load control. The drive cycle test is initiated from a hot engine and hence no cold start is included. Commercial RON/MON 92/82 gasoline, which corresponds to US regular, is utilized.
Technical Paper

Optical Diagnostics of HCCI and UNIBUS Using 2-D PLIF of OH and Formaldehyde

2005-04-11
2005-01-0175
Simultaneous OH- and formaldehyde planar-LIF measurements have been performed in an optical engine using two laser sources working on 283 and 355 nm, respectively. The measurements were performed in a light duty Diesel engine, using n-heptane as fuel, converted to single-cylinder operation and modified for optical access. It was also equipped with a direct injection common rail system as well as an EGR system. The engine was operated in both HCCI mode, using a single fuel injection, and UNIBUS (Uniform Bulky Combustion System) mode, using two injections of fuel with one of the injections at 50 CAD before TDC and the other one just before TDC. The OH and formaldehyde LIF images were compared with the heat-release calculated from the pressure-traces. Analyses of the emissions, for example NOx and HC, were also performed for the different operating conditions.
Technical Paper

Operating Conditions Using Spark Assisted HCCI Combustion During Combustion Mode Transfer to SI in a Multi-Cylinder VCR-HCCI Engine

2005-04-11
2005-01-0109
The Homogenous Charge Compression Ignition (HCCI) operating range in terms of speed and load does not cover contemporary driving cycles, e.g. the European driving cycle EC2000, without increased engine displacement, supercharging, or without excessive noise and high NOx emissions. Hence, the maximum achievable load with HCCI is too low for high load vehicle operation and a combustion mode transfer from HCCI to spark ignited (SI) has to be done. At some operating conditions spark assisted HCCI combustion is possible, which makes a mixed combustion mode and controlled combustion mode transfers possible. The mixed combustion region and the operating conditions are investigated in this paper from lean SI limit to pure HCCI without SI assistance. Parameters as compression ratio, inlet air pressure, inlet air temperature, and lambda are used for controlling the mixed combustion mode. A strategy for closed-loop combustion mode transfer is discussed.
Technical Paper

Optical Diagnostics of HCCI and Low-Temperature Diesel Using Simultaneous 2-D PLIF of OH and Formaldehyde

2004-10-25
2004-01-2949
Simultaneous OH- and formaldehyde planar-LIF measurements have been performed in an optical engine using two laser sources working on 283 and 355 nm, respectively. The engine used for the measurements was a car Diesel engine converted to single-cylinder operation and modified for optical access. The fuel, n-heptane, was injected by a direct injection common rail system and the engine was also fitted with an EGR system. The engine was operated in both HCCI mode and Diesel mode. Due to the low load, the Diesel mode resulted in low-temperature Diesel combustion and because of limitations in maximum pressure and maximum rate of pressure increase of the optical engine, the Diesel mode was run at a higher EGR percentage than the HCCI mode to slow down the combustion. A third mode, pilot combustion, was also investigated. This pilot combustion is created by an injection at 30 CAD before TDC followed by a second injection just before TDC.
Technical Paper

Balancing Cylinder-to-Cylinder Variations in a Multi-Cylinder VCR-HCCI Engine

2004-06-08
2004-01-1897
Combustion initiation in an HCCI engine is dependent of several parameters that are not easily controlled like the temperature and pressure history in the cylinder. So achieving the same ignition condition in all the cylinders in a multi-cylinder engine is difficult. Factors as gas exchange, compression ratio, cylinder cooling, fuel supply, and inlet air temperature can differ from cylinder-to-cylinder. These differences cause both combustion phasing and load variations between the cylinders, which in the end affect the engine performance. Operating range in terms of speed and load is also affected by the cylinder imbalance, since misfiring or too fast combustion in the worst cylinders limits the load. The cylinder-to-cylinder variations are investigated in a multi-cylinder Variable Compression Ratio (VCR) engine, and the effect it has on the engine performance.
Technical Paper

HCCI Closed-Loop Combustion Control Using Fast Thermal Management

2004-03-08
2004-01-0943
This study applies Closed-Loop Combustion Control (CLCC) using Fast Thermal Management (FTM) on a multi cylinder Variable Compression Ratio (VCR) engine together with load control, to achieve a favorable combustion phasing and load at all times. Step changes of set points for combustion phasing, Compression Ratio (CR), and load together with ramps of engine speed with either constant load, i.e. load control enabled, or constant fuel amount are investigated. Performances of the controllers are investigated by running the engine and comparing the result with CLCC using VCR, which was used in an earlier test. Commercial RON/MON 92/82 gasoline, which corresponds to US regular, is used in the transient tests. Limitations to the speed ramps are further examined and it is found that choice of fuel and its low temperature reaction properties has large impact on how the CLCC perform.
Technical Paper

Pressure Oscillations During Rapid HCCI Combustion

2003-10-27
2003-01-3217
This work has focused on studying the in-cylinder pressure fluctuations caused by rapid HCCI combustion and determine what they consist of. Inhomogeneous autoignition sets up pressure waves traversing the combustion chamber. These pressure waves induce high gas velocities which causes increased heat transfer to the walls or in worst case engine damage. In order to study the pressure fluctuations a number of pressure transducers were mounted in the combustion chamber. The multi transducer arrangement was such that six transducers were placed circumferentially, one placed near the centre and one at a slight offset in the combustion chamber. The fitting of six transducers circumferentially was enabled by a spacer design and the two top mounted transducers were fitted in a modified cylinder head. During testing a disc shaped combustion chamber was used. The results of the tests conducted were that the in-cylinder pressure experienced during rapid HCCI-combustion is inhomogeneous.
Technical Paper

Operating range in a Multi Cylinder HCCI engine using Variable Compression Ratio

2003-05-19
2003-01-1829
Homogenous Charge Compression Ignition (HCCI) is a promising part load combustion concept for future power train applications. Different approaches to achieve and control HCCI combustion are today investigated and compared, especially concerning operating range. The HCCI operating range for vehicle applications should at least cover contemporary emissions drive cycles. The operating range in terms of speed and load is investigated with a Naturally Aspirated (NA) four-stroke multi-cylinder engine with Port Fuel Injection (PFI). HCCI combustion control is achieved with Variable Compression Ratio (VCR) and inlet air preheating with exhaust heat. Both primary reference fuels and commercial gasoline are used in the tests. HCCI combustion with commercial gasoline is achieved over a load range from 0 to 3.6bar BMEP, and over a speed range from 1000 to 5000rpm. Maximum load is at 1000rpm and decreases with an approximately straight slope to zero at 5000rpm.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

The Effect of Piston Topland Geometry on Emissions of Unburned Hydrocarbons from a Homogeneous Charge Compression Ignition (HCCI) Engine

2001-05-07
2001-01-1893
The effect of crevice volumes on the emissions of unburned hydrocarbons from a Homogeneous Charge Compression Ignition (HCCI) engine has been experimentally investigated. By varying the size and the geometry of the largest crevice, the piston topland, it was possible to ascertain whether or not crevices are the largest source of HC. Additionally, information on quenching distances for ultra lean mixtures was obtained. The tests were performed on a single cylinder engine fuelled with iso-octane. The results showed that most of the unburned hydrocarbons descend from the crevices. Increasing the topland width to some degree lead to an increase in HC. A further increase in topland width (>1.3 mm) resulted in a reduction of HC when using mixtures richer than λ ≈ 2.8, indicating that some of the mixture trapped in the topland participates in the combustion. In conditions when combustion occurred in the topland, the HC was rather insensitive to the height of the topland.
Technical Paper

Homogeneous Charge Compression Ignition with Water Injection

1999-03-01
1999-01-0182
The use of water injection in a Homogeneous Charge Compression Ignition (HCCI) engine was experimentally investigated. The purpose of this study was to examine whether it is possible to control the ignition timing and slow down the rate of combustion with the use of water injection. The effects of different water flows, air/fuel ratios and inlet pressures were studied for three different fuels, iso-octane, ethanol and natural gas. It is possible to control the ignition timing in a narrow range with the use of water injection, but to the prize of an increase in the already high emissions of unburned hydrocarbons. The CO emission also increased. The NOx emissions, which are very low for HCCI, decreased even more when water injection was applied. The amount of water used was of the magnitude of the fuel flow.
X