Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Twenty Years of Engine Tribology Research: Some Important Lessons to Learn

2023-08-28
2023-24-0102
The current political push for e-mobility marked a major decline in the R&D interest to internal combustion engine (ICE). Following this global trend, Ford is committed to going 100% electric by 2030 for passenger cars and 2035 for light commercial vehicles. At the same time, many researchers admit that, due to many objective factors, vehicles powered by ICE will remain in operation for decades to come. Development of alternative carbon-neutral fuels can bring a renaissance in the ICE development as practical limitations of electric-only approach get exposed. Since a significant part of energy losses in the ICE comes from friction, engine tribology has been an important research topic over the past two decades and a significant progress in improving the engine efficiency was achieved.
Journal Article

Fast Air-Path Modeling for Stiff Components

2022-03-29
2022-01-0410
Development of propulsion control systems frequently involves large-scale transient simulations, e.g. Monte Carlo simulations or drive-cycle optimizations, which require fast dynamic plant models. Models of the air-path—for internal combustion engines or fuel cells—can exhibit stiff behavior, though, causing slow numerical simulations due to either using an implicit solver or sampling much faster than the bandwidth of interest to maintain stability. This paper proposes a method to reduce air-path model stiffness by adding an impedance in series with potentially stiff components, e.g. throttles, valves, compressors, and turbines, thereby allowing the use of a fast-explicit solver. An impedance, by electrical analogy, is a frequency-dependent resistance to flow, which is shaped to suppress the high-frequency dynamics causing air-path stiffness, while maintaining model accuracy in the bandwidth of interest.
Journal Article

The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy

2020-06-30
2020-37-0010
The increase in efficiency is the focus of current engine development by adopting different technologies. One limiting factor for the rise of SI-engine efficiency is the onset of knock, which can be mitigated by improving the combustion process. HCCI/SACI represent sophisticated combustion techniques that investigate the employment of pre-chamber with lean combustion, but the effective use of them in a wide range of the engine map, by fulfilling at the same time the need of fast load control are still limiting their adoption for series engine. For these reasons, the technologies for improving the characteristics of a standard combustion process are still largely investigated. Among these, water injection, in combination with the Miller cycle, offers the possibility to increase the knock resistance, which in turn enables the rise of the engine geometric compression ratio.
Technical Paper

Hybrid Powertrain Technology Assessment through an Integrated Simulation Approach

2019-09-09
2019-24-0198
Global automotive fuel economy and emissions pressures mean that 48 V hybridisation will become a significant presence in the passenger car market. The complexity of powertrain solutions is increasing in order to further improve fuel economy for hybrid vehicles and maintain robust emissions performance. However, this results in complex interactions between technologies which are difficult to identify through traditional development approaches, resulting in sub-optimal solutions for either vehicle attributes or cost. The results presented in this paper are from a simulation programme focussed on the optimisation of various advanced powertrain technologies on 48 V hybrid vehicle platforms. The technologies assessed include an electrically heated catalyst, an insulated turbocharger, an electric water pump and a thermal management module.
Technical Paper

Optimal Engine Re-Start Strategy on a Mild Hybrid Powertrain by Means of Up-Front Modelling

2019-09-09
2019-24-0206
The ability to switch off the internal combustion engine (ICE) during vehicle operation is a key functionality in hybrid powertrains to achieve low fuel economy. However, this can affect driveability, namely acceleration response when an ICE re-engagement due to a driver initiated torque demand is required. The ICE re-start as well as the speed and load synchronisation with the driveline and corresponding vehicle speed can lead to high response times. To avoid this issue, the operational range where the ICE can be switched off is often compromised, in turn sacrificing fuel economy. Based on a 48V off-axis P2 hybrid powertrain comprising a lay-shaft transmission we present an up-front simulation methodology that considers the relevant parameters of the ICE like air-path, turbocharger, friction, as well as the relevant mechanical and electrical parameters on the hybrid drive side, including a simplified multi-body approach to reflect the relevant vehicle and powertrain dynamics.
Technical Paper

Development of a New 1.8L Down-Speeding Turbocharged Gasoline Engine with Miller Cycle

2018-09-10
2018-01-1712
Upcoming China 4th stage of fuel consumption regulation and China 6a emission legislation require improvement of many existing engines. This paper summarizes an upgrade of combustion system and mechanical layout for a four-cylinder engine family. Based on an existing production process for a naturally aspirated 2.0-liter gasoline engine, a 1.8-liter down-speeded and turbocharged gasoline engine is derived. Starting development by analysis of engine base geometry, a layout for a Miller-Cycle gas exchange with early closing of intake valves is chosen. Requirements on turbocharger configuration are investigated with one-dimensional gas exchange simulation and combustion process will be analyzed by means of 3D-CFD simulation. Challenging boundary conditions of a very moderate long-stroke layout with a stroke/bore-ratio of only 1.037 in combination with a cost efficient port fuel injection system and fixed valve lift profiles are considered.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Journal Article

In-Situ Measurements of the Piston and Connecting Rod Dynamics Correlated with TEHL-Simulation Techniques

2017-09-04
2017-24-0157
High combustion pressure in combination with high pressure gradient, as they e.g. can be evoked by high efficient combustion systems and e.g. by alternative fuels, acts as broadband excitation force which stimulates natural vibrations of piston, connecting rod and crankshaft during engine operation. Starting from the combustion chamber the assembly of piston, connecting rod and crankshaft and the main bearings represent the system of internal vibration transfer. To generate exact input and validation values for simulation models of structural dynamic and elasto-hydrodynamic coupled multi-body systems, experimental investigations are done. These are carried out on a 1.5-l inline four cylinder Euro 6 Diesel engine. The modal behaviour of the system was examined in detail in simulation and test as a basis for the investigations. In an anechoic test bench airborne and structure-borne noises and combustion pressure are measured to identify the engine´s vibrational behaviour.
Technical Paper

Potential of Electric Energy Recuperation by Means of the Turbocharger on a Downsized Gasoline Engine

2017-09-04
2017-24-0162
The application of a turbocharger, having an electric motor/generator on the rotor was studied focusing on the electric energy recuperation on a downsized gasoline internal combustion engine (turbocharged, direct injection) using 1D-calculation approaches. Using state-of-the art optimization techniques, the settings of the valve timing was optimized to cater for a targeted pre-turbine pressure and certain level of residual gases in the combustion chamber to avoid abnormal combustion events. Subsequently, a steady-state map of the potential of electric energy recuperation was performed while considering in parallel different efficiency maps of the potential generator and a certain waste-gate actuation strategy. Moreover, the results were taken as input to a WLTP cycle simulation in order to identify any synergies with regard to fuel economy.
Journal Article

Next-Generation Low-Voltage Power Nets Impacts of Advanced Stop/Start and Sailing Functionalities

2017-03-28
2017-01-0896
The range of tasks in automotive electrical system development has clearly grown and now includes goals such as achieving efficiency requirements and complying with continuously reducing CO2 limits. Improvements in the vehicle electrical system, hereinafter referred to as the power net, are mandatory to face the challenges of increasing electrical energy consumption, new comfort and assistance functions, and further electrification. Novel power net topologies with dual batteries and dual voltages promise a significant increase in efficiency with moderate technological and financial effort. Depending on the vehicle segment, either an extension of established 12 V micro-hybrid technologies or 48 V mild hybridization is possible. Both technologies have the potential to reduce fuel consumption by implementing advanced stop/start and sailing functionalities.
Technical Paper

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

2017-03-28
2017-01-0698
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand.
Journal Article

Optimization of Exhaust After-Treatment System (EATS) to BS 6 Emission Level for a Light Commercial Vehicle (LCV) Using Existing BS 4 Engine Results and 1-D Simulation Approach

2017-01-10
2017-26-0119
The emission legislations are becoming increasingly strict all over the world and India too has taken a big leap in this direction by signaling the migration from Bharat Stage 4 (BS 4) to BS 6 in the year 2020. This decision by the Indian government has provided the Indian automotive industry a new challenge to find the most optimal solution for this migration, with the existing BS 4 engines available in their portfolio. Indian market for the LCV segment is highly competitive and cost sensitive where the overall vehicle operation cost (vehicle cost + fluid consumption cost) is the most critical factor. The engine and after-treatment technology for BS 6 emission levels should consider the factors of minimizing the additional hardware cost as well as improving the fuel efficiency. Often both of which are inversely proportional. The presented study involves the optimization of after treatment component size, layout and various systems for NOx and PM reduction.
Technical Paper

Tuning and Validation of DPF for India Market

2017-01-10
2017-26-0135
In a move to curb vehicular pollution, Indian Government decided to bring forward the date for BSVI standards into effect from April 2020 while skipping the intermediate BSV stage. The plan to implement BSVI norms, which initially was scheduled for 2024 according to the National Auto Fuel Policy dated April 27, 2015, has now been slotted for April 2020. For particulate mass (PM) emissions to be brought down to the BS VI level (4.5mg/km), diesel passenger cars need to be fitted with a diesel particulate filter (DPF). The diesel particulate filter (DPF) is a device designed to remove soot from the exhaust gas of the diesel engine. DPF must be cleaned/regenerated from time to time else, it will block up. Optimized DPF calibration is the key for various challenges linked with its use as one of the effective PM reduction technology.
Technical Paper

Comparative Study to Assess the Potential of Different Exhaust Gas Aftertreatment Concepts for Diesel Powered Ultra-Light Commercial Vehicle Applications in View of Meeting BS VI Legislation

2017-01-10
2017-26-0128
Despite the trend in increased prosperity, the Indian automotive market, which is traditionally dominated by highly cost-oriented producion, is very sensitive to the price of fuels and vehicles. Due to these very specific market demands, the U-LCV (ultra-light commercial vehicle) segment with single cylinder natural aspirated Diesel engines (typical sub 650 cc displacement) is gaining immense popularity in the recent years. By moving to 2016, with the announcement of leapfrogging directly to Bharat Stage VI (BS VI) emission legislation in India, and in addition to the mandatory application of Diesel particle filters (DPF), there will be a need to implement effective NOx aftertreament systems. Due to the very low power-to-weight ratio of these particular applications, the engine operation takes place under full load conditions in a significant portion of the test cycle.
Journal Article

Future Specification of Automotive LPG Fuels for Modern Turbocharged DI SI Engines with Today’s High Pressure Fuel Pumps

2016-10-17
2016-01-2255
Liquefied Petroleum Gas direct injection (LPG DI) is believed to be the key enabler for the adaption of modern downsized gasoline engines to the usage of LPG, since LPG DI avoids the significant low end torque drop, which goes along with the application of conventional LPG port fuel injection systems to downsized gasoline DI engines, and provides higher combustion efficiencies. However, especially the high vapor pressure of C3 hydrocarbons can result in hot fuel handling issues as evaporation or even in reaching the supercritical state of LPG upstream or inside the high pressure pump (HPP). This is particularly critical under hot soak conditions. As a result of a rapid fuel density drop close to the supercritical point, the HPP is not able to keep the rail pressure constant and the engine stalls.
Journal Article

Advanced Fuel Formulation Approach using Blends of Paraffinic and Oxygenated Biofuels: Analysis of Emission Reduction Potential in a High Efficiency Diesel Combustion System

2016-10-17
2016-01-2179
This work is a continuation of earlier results presented by the authors. In the current investigations the biofuels hydrogenated vegetable oil (HVO) and 1-octanol are investigated as pure components and compared to EN 590 Diesel. In a final step both biofuels are blended together in an appropriate ratio to tailor the fuels properties in order to obtain an optimal fuel for a clean combustion. The results of pure HVO indicate a significant reduction in CO-, HC- and combustion noise emissions at constant NOX levels. With regard to soot emissions, at higher part loads, the aromatic free, paraffinic composition of HVO showed a significant reduction compared to EN 590 petroleum Diesel fuel. But at lower loads the high cetane number leads to shorter ignition delays and therefore, ignition under richer conditions.
Technical Paper

Development of Combustion System for a 1-Liter Advanced Turbocharged Gasoline Direct Injection 3-Cylinder Engine

2016-10-17
2016-01-2243
In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of the combustion system. Considering air/fuel mixture, fuel wall impingement and even future potential for lean burn combustion, a symmetrical layout and a central position for the injector with 200bar injection pressure was determined.
Technical Paper

Damping Effects Introduced by a Nonlinear Vibration Absorber in Automotive Drivelines at Idle Engine Speeds

2016-06-15
2016-01-1765
Legislation on vehicle emissions and the requirements for fuel efficiency are currently the key development driving factors in the automotive industry. Research activities to comply with these targets point to engine downsizing and new boosting technologies, which have adverse effects on the NVH performance, durability and component life. As a consequence of engine downsizing, substantial torsional oscillations are generated due to high combustion pressures. Meanwhile, to attenuate torsional vibrations, the manufacturers have implemented absorbers that are tuned to certain frequency ranges, including clutch dampers, Dual Mass Flywheel (DMF) and centrifugal pendulum dampers. These devices add mass/inertia to the system, potentially introducing negative effects on other vehicle attributes, such as weight, driving performance and gear shiftability.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
X