Refine Your Search

Topic

Author

Search Results

Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Technical Paper

The Root-Cause Analysis of Engine Stall at Hot Ambient Resulted from Low Pressure Fuel Pump

2022-03-29
2022-01-0624
In case of all gasoline vehicles such as the passenger vehicle, heavy duty truck and light duty truck etc., a fuel pump is located inside the fuel tank and transfers the fuel to an engine for stable driving, however, engine stall can be occurred by low pressure fuel pump. The boiling temperature of gasoline fuel is very low, the initial boiling point is around 40°C so fuel can boil easily while driving and end boiling point is around 190°C. It boils sequentially depending on the temperature. It becomes the criteria to determine the amount of vapor released inside the fuel tank at high temperature. The main cause of engine stall at high temperature is rapid fuel boiling by increasing fuel temperature. This causes a lot of vapor. Such vapor flows into the fuel pump which leading to decrease the pump load and the current consumption of the fuel pump continuously. This ultimately results in engine stall.
Technical Paper

Development of the Active Sound Generation Technology Using Motor Driven Power Steering System

2020-09-30
2020-01-1536
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented.
Technical Paper

A Method of the Improvement of Wireless Power Transfer (WPT) System Efficiency, Compatibility, EMI Reduction, and Foreign Object Detection (FOD) for EV Applications

2020-04-14
2020-01-0530
During the charging Electric Vehicle (EV), power transfer occurs in the power electronics of an EV powertrain. Understanding how the Wireless Power Transfer (WPT) occurs would be beneficial for achieving convenient charging method. This paper focuses on improving WPT system pad compatibility, power transfer efficiency, EMI reduction, and Foreign Object Detection (FOD). The choice of convertible WPT pad for circular and DD type coil, improvement of pad compatibility is analyzed in this paper. In addition, several control methods of increasing WPT system efficiency are proposed. Firstly, the effect of Full Bridge - Half Bridge (FB-HB) is introduced, and the influence of a Bridgeless control scheme is discussed. A new, ferrite pad structure is applied to WPT system in order to achieve EMI reduction. Lastly, a new strategy of Foreign Object Detection (FOD) is suggested for WPT system using phase difference and frequency variation detection.
Technical Paper

Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation

2020-04-14
2020-01-0582
This paper presents an energy-optimal deceleration planning system (EDPS) to maximize regenerative energy for electrified vehicles on deceleration events perceived by map and navigation information, machine vision and connected communication. The optimization range for EDPS is restricted within an upcoming deceleration event rather than the entire routes while in real time considering preceding vehicles. A practical force balance relationship based on an electrified powertrain is explicitly utilized for building a cost function of the associated optimal control problem. The optimal inputs are parameterized on each computation node from a set of available deceleration profiles resulting from a deceleration time model which are configured by real-world test drivings.
Technical Paper

Numerical Study on Fluid Flow and Heat Transfer Characteristics of a Ventilated Brake Disc Connected to a Wheel

2018-10-05
2018-01-1878
The role of a brake disc is to convert the kinetic energy of automobiles into thermal energy caused by friction between the brake pads and disc surfaces. The braking performance of an overheated disc is decreased due to hot judder and fade. Hence, the cooling technology of a brake disc is one of the most important issues related to automobile safety. In the present study, the fluid flow and heat transfer analysis of a ventilated brake disc are conducted numerically. Some geometries of automotive parts such as bearings, hubs and wheels are considered in this study. The commercial code ANSYS CFX is used to simulate the fluid flow and the conjugate heat transfer which includes conduction and convection. To evaluate the cooling performance in each case, the results, including the flow patterns of cooling air inside the wheel and the heat transfer coefficient distribution at the disc surfaces, were investigated and compared for various disc-hub combinations.
Technical Paper

A Study of the Disc Scoring Generation Principle and Reduction (II)

2018-10-05
2018-01-1891
In the latest paper [10], we presented our work based on experiments studying MPU (Metal Pick Up) of the pad and scoring(scratching) of the disc. The main component of MPU was iron “Fe”. If the roughness of the disc was small, the content of iron “Fe” was increased and the segregation of that was decreased especially in initial condition. In this study, we extended our study based on the results by adding some additional factors such as the location of the roughness of the disc, the coefficients brake pad friction, and disc slots. We made various discs of different roughness boundaries and slots, and pads of pad friction coefficients; and conducted two types of tests for whether a slot is present or not with the other same conditions to confirm the impact of the scoring. We find and believe that our experimental data should serve a useful guideline for reducing MPU of the pad and scoring of the disc.
Technical Paper

Optimization of Slot Disc Shape for Improving Brake Fade Performance

2018-10-05
2018-01-1883
Due to improvements in vehicle powertrain performance, friction material fade performance is becoming an important topic. For this reason, needs for studies to improve thermal characteristics of the brake system is increasing. Methods for improving the fade characteristics have several ways to improve the thermal characteristic of friction materials and increase disc capacity. However, increasing disc capacity(size) have some risk of weight and cost rise, and friction factor improvements in friction material tend to cause other problems, such as increasing squeal wire brush noise and increasing metal pick up on disc surface. Therefore, a slot disc study is needed to overcome the problems discussed previously. Currently, there is few research history for slot disc related to fade and metal pickup improvements.
Journal Article

A Study of the Disc Scoring Generation Principle and Reduction

2017-09-17
2017-01-2501
Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Success of doing this properly causes more heat to the disc in the brake system which results in the deformation or scratches on the surface of it and a reduction in the appearance of the product. A study for detailed factors to aggravate this was done as a solution to prevent these from happening. In this paper, we present our work based on experiments to study MPU (Metal Pick Up) of the pad and the scoring(scratching) of the disc. MPU of which the main component is “Fe”, is formed through the process of fusing the separated materials from the disc by friction with the pad, and by local heat generation to the pad. [1,2,3,4,5] The occurrence of MPU and the possibility of the disc scoring resulting from this were studied by noting “Fe” which was transferred to the surface of the pad to different extent and degree of segregation according to the roughness of the disc.
Technical Paper

Analysis of Rear Brake Grinding Noise by Rear Suspension Types

2017-09-17
2017-01-2486
Brake grinding noise is caused by the friction of the disc and pads. The friction generates vibration and it transmits to the body via the chassis system. We called it structure-borne noise. To improve the noise in the vehicle development, the aspects of chassis or body's countermeasure occurs many problems, cost and time. In this reason many brake companies try to make solution with brake system, like brake pad materials or disc surface condition. However the countermeasures of excitation systems also have a lot of risk. It could be occurred side-effects of braking performance, and need to re-verify brake noise like Creep-groan, Groan, Squeal, Judder and so on. For this reason, it is essential to make a robust chassis system in the initial development stage of the vehicle for the most desirable grinding noise-resistant vehicle. This paper is about rear brake grind noise path analysis and countermeasure of chassis system. There are two steps to analysis.
Technical Paper

Development of Integrated Chassis Control for Limit Handling

2016-04-05
2016-01-1638
This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

A Study on the Transfer Path Analysis of Brake Creep Groan Noise

2014-09-28
2014-01-2510
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. It is caused by the stick-sleep phenomenon at the lining and disc interface. Recently, the field claim of low frequency creep groan has increased. There are a lot of efforts to improve creep groan noise by means of modification of lining material. In this paper, Transfer path of creep groan noise was analyzed through ODS and TPA. Additionally the correlation between Source (Brake torque variation, Brake vibration) and Creep Groan Sound level was discussed. Finally countermeasure to Creep Groan noise was suggested.
Technical Paper

Optimization of Cooling Air Duct and Dust Cover Shape for Brake Disc Best Cooling Performance

2014-09-28
2014-01-2519
Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Failure of doing this properly causes temperature rise in the brake disc which result in the brake fade, disc distortion, brake judder, etc. A cooling-air-duct was proposed as a solution to prevent these from happening. In this paper, we present our work based on experiments optimized parameters such as direction, location, shapes and the size of the duct for the cooling-air-duct installation in real cars. We installed the duct extended from a front bumper to a rear wheel guard. Experimental parameters were compared with theoretical analysis using the impinging jet analysis. The heat transfer coefficients were determined by using the finite elements method (FEM). We found that our experimental data is supportive of theoretical analysis. We believe that our results should serve an useful guideline for designing the cooling-air-duct for braking system.
Journal Article

Electro-Mechanical Brake for Front Wheel with Back-up Braking

2014-09-28
2014-01-2538
Electro-Mechanical Brake (EMB) is the brake system that is actuated by electrical energy and has a similar design with the Electric Parking Brake (EPB). It uses motor power and gears to provide the necessary torque and a screw & nut mechanism is used to convert the rotational movement into a translational one. The main difference of EMB compared with EPB is that the functional requirements of components are much higher to provide the necessary performance for service braking such as response time. Such highly responsive and independent brake actuators at each wheel lead to enhanced controllability which should result in not only better basic braking performance, but also improvements in various active braking functions such as integrated chassis control, driver assistance systems, or cooperative regenerative braking.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Integrated Chassis Control for Improving On-Center Handling Behavior

2014-04-01
2014-01-0139
This paper proposes a new integrated chassis control (ICC) using a predictive model-based control (MPC) for optimal allocation of sub-chassis control systems where a predictive model has 6 Degree of Freedom (DoF) for rigid body dynamics. The 6 DoF predictive vehicle model consists of longitudinal, lateral, vertical, roll, pitch, and yaw motions while previous MPC research uses a 3 DoF maximally predictive model such as longitudinal, lateral and yaw motions. The sub-chassis control systems in this paper include four wheel individual braking torque control, four wheel individual driving torque control and four corner active suspension control. Intermediate control inputs for sub-chassis control systems are simplified as wheel slip ratio changes for driving and braking controls and vertical suspension force changes for an active suspension control.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Technical Paper

A Study on the Strategy and Implementing Technology for the Development of Luxurious Driving Sound

2014-04-01
2014-01-0035
This paper describes a systematic approach to the development of a luxurious driving sound. In the first step, the luxurious sound is conceptualized through jury test, factor analysis and regression analysis. From the results, the main factors and the correlation equation for the luxurious sound are extracted. Also, customer's preference for the luxurious sound is investigated from the customer clinic. In the second step, three core axes and the detailed indices for luxurious sound are defined and quantified. These core axes are a dynamic sound character, a sound balance and a sound harmony. These core axes are also composed of detailed indices and quantified by guide lines. In the third step, each contribution of the sub-systems for sound quality is identified and the target values and methods for implementing the luxurious sound are suggested. In this process, noise path analysis and the customer's preference in each region are considered.
X