Refine Your Search

Topic

Search Results

Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

Optimization of Structural Rigidity of the Door Module Mounting part

2024-04-09
2024-01-2223
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Journal Article

A Study on Flexible Transparent Electrode Materials for Touch Sensor

2023-04-11
2023-01-0074
As the AVN display in the car interior becomes larger and located above the center fascia, the driver's visual visibility is becoming important. In addition, since an expensive touch sensor is installed, a transparent electrode cost reduction technology for a display touch sensor that can replace an indium material, which is an expensive rare metal, is required. In this paper, we developed new transparent electrode materials and manufacturing methods for the touch sensor film which light reflectance is low and flexible without a separate low-reflection multi-layer, so that the design freedom is high and the material cost is low. By optimizing the amount of fluorine doping ratio in tin oxide, excellent electrical conductivity and high optical transmittance are secured, and the surface reflectance is reduced by adjusting the diameter and length of the silver nanowire. As a result, it was shown that the AVN display image and font readability was improved.
Technical Paper

A Study to Reduce the Minimum Distance of the Vehicle Sensor’s Detecting Range Using a Prior Estimation Method

2022-03-29
2022-01-0072
As autonomous driving vehicles are developed, automotive makers start focusing on implementing new door types, such as a falcon wing door or a B-pillarless dual sliding door, which could be one of the best-selling points. To make these doors electrically operate, applying advanced sensors like a RADAR or an Ultrasonic sensor is almost mandatory. Without these sensors, the door could be easily damaged or the customers could be seriously injured. Due to physical limitation, however, every sensor has a noise in nearby area and has a specification of the minimum detection range, which causes us not to be able to precisely detect the object in close area. If the controller cannot detect the precise distance of the object, the door could malfunction, since it could misidentify the obstacles. In this paper, we propose a method to reduce the minimum detection range by applying a prior estimation scheme.
Technical Paper

Lateral Control of a Commercial Vehicle Using Feedback Augmented Disturbance Observer

2022-03-29
2022-01-0093
In the path following problem, a commercial vehicle has a delay of a hydraulic steering actuator and slow steering response accordingly. In addition, there are disturbances due to the harsh driving conditions of commercial vehicles. These disturbances may include uncertainties about actuator dynamic delay, modeling error and steering angle sensor offset. Designing a lateral controller with good performance that can overcome this problem is the key to successfully carrying out autonomous driving of commercial vehicles. Usually, it is difficult to consider disturbances with uncertainties in the geometric based control methods. Therefore, this paper proposed a lateral controller using feedback augmented disturbance observer for the commercial vehicle. First, a dynamics was modeled which can describe delay of the hydraulic actuator of the commercial vehicle. After that, a lateral controller was designed based on this dynamics model.
Journal Article

Analysis of Formaldehyde Scavenger and Its Reaction Products in POM Using Mass Spectrometry

2021-04-06
2021-01-0360
To meet the indoor air quality guideline of newly manufactured vehicles in Korea, China, and other countries, low formaldehyde grade POM (Polyoxymethylene) is used for interior parts essentially. In this paper, formaldehyde scavengers from of 2 commercial low formaldehyde grade POM pellets were identified by LC-MS (Liquid chromatograph-Mass spectrometer) as sebacic dihydrazide and dodecanedioic dihydrazide respectively. The reaction products between formaldehyde and formaldehyde scavengers were also detected, which were converted from hydrazide to hydrazone. So, this kind of additive would be gradually consumed by repetitive molding process or exposure to heat according to formaldehyde emission increase. We are expecting to apply this analytical method and result for quality control and benchmark of low formaldehyde grade POM.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Journal Article

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

2020-09-30
2020-01-1570
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53x0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators.
Technical Paper

A Study on Optimization of the Cross-Section of Door Impact Beam for Weight Reduction

2020-04-14
2020-01-0631
This paper focuses on the optimization of the cross-section of a panel type impact door beam. The key parameters of the cross-section of the beam were artificially changed by using a geometry morphing tool FCM (Fast Concept Modeler), which is plugged in to CATIA. Then, the metamodel of FE (Finite Element) analysis results was created and optimized using LS-OPT. The ANOVA (Analysis of Variance) analysis of results was carried out to find the factor of weight reduction. Finally, a new cross section concept was proposed to overcome the limitation of old structure. The optimization was carried out for the beam with the final cross-section to have 10 % or more reduction in total weight.
Technical Paper

A Study of Design Methodology to Develop Improved Door System of a Vehicle

2019-04-02
2019-01-0616
In the past few years, technological innovations in the automobile industry took vehicle performance to the next level. One such innovation is frame integrated panel door. This type of door helps automobile companies to have the advantages of both conventional panel and frame type doors. Though it has a good number of advantages, there are some drawbacks too. It requires improvements in its quality, NVH performance, weight and etc. Quality of a door is low due to the limitations in structural design and manufacturing technologies. And it is difficult to have a robust structure which leads to degradation of key performing factors such as NVH. For a lightweight vehicle, it is important to design an optimized structure for saving weight, without compromising its performance. In order to overcome these drawbacks a new optimized design structure is required for door system.
Technical Paper

The Study of Optimization of Sliding Door Effect

2019-03-25
2019-01-1425
A sliding door system is one of the vehicle door types, which is generally applied to the MPVs. The Sliding door is contains three rails (an upper, a center, and lower rail), which are mounted on body structure, and three rollers (the upper roller, the center roller, Lower roller), which are mounted on the sliding door side. The system is different from a swing door, rotated by hinge axis. To set up sliding door layout for better performance, predict operating force is one of the main factors, But The door moving trace is on three-dimension, hard to calculate and predict. So in this study, it is an object to analyze the impact between the main factors affecting the performance of the closing and open performance and the sliding door through the study formula and a layout scheme for ensuring the best operating performance of the sliding doors.
Technical Paper

Engine Sound Quality Development Using Engine Vibration

2018-06-13
2018-01-1487
Automotive companies are trying to enhance the customer’s impression by improving engine sound quality. The target of this sound quality is to create a brand sound that is preferred by their customers as well as quietness of interior noise. Over the past decade there have been many studies in the field of automotive sound quality. These have included the technologies such as tuning of intake orifice and exhaust orifice, tuning of structure-borne, intake feedback devices, active exhaust valves, ANC (Active Noise Cancellation) and ASD (Active Sound Design). The three elements of the sound that affect the feeling of the customer are known as engine order arrangement, frequency balance, and linearity. Here, the most important thing in sound quality development is the order arrangement.
Technical Paper

Development New Organic Composite Materials with Excellent Long-Term High-Temperature Durability and Reliability for Automotive Parts

2018-04-03
2018-01-0151
In recent years, the emerging technology competitions in automotive industry are improving engine efficiency and electronizing for coping with stringent fuel-economy regulations. However, fuel-economy technologies such as engine down-sizing and numerous electronic parts entrust burden plastic materials acing as mainly electric insulation and housing to have to be higher performance, especially temperature endurance. Engineering plastics (EPs) have critical limitations in terms of degradation by heat. Heat-resisting additives in EP are generally used to be anti-degradation as activating non-radical decomposition of peroxide. However, it could not be effective way to impede the degradation in long term heat aging over 1,000 hours at high temperature above 180 °C. In this study, we suggested the new solution called ‘shield effect’ that is purposeful oxidation at the surface and local crystallization of EP to stop prevent penetrating oxygen to inside of that.
Technical Paper

A Study of Low-Friction Road Estimation using an Artificial Neural-Network

2018-04-03
2018-01-0811
Road friction estimation algorithms had been studied for many years because it is very important factor for safety control and fuel efficiency of vehicle. But traditional solutions are hard to adapt in automotive industry because their performance is not sufficient enough and expensive to implement. Therefore, this paper proposes a road friction estimation algorithm based on a trained artificial neural-network which is low cost and robust. The suggested method doesn’t need expensive additional sensors such as optical or lidar sensor, also it shows better performance in real car environment compared to other algorithms based on vehicle dynamics. In this paper, we would describe this algorithm in detail and analyze the test results evaluated in real road conditions.
Journal Article

Study of Optimizing Sliding Door Efforts and Package Layout

2017-03-28
2017-01-1302
A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
Technical Paper

Minimizing the Rattling of Door Glass

2017-03-28
2017-01-0443
Significant effort has been expended to improve the sound made by a closing car door. This study focuses on reducing door glass rattle sounds, not only evaluating the rattle influence of door glass support but also introducing an approach to reduce glass rattle noise by using sealing components. The first part of the study is dedicated to minimizing vibration. A jig is constructed to evaluate the influence of a door glass support on the rattling. The jig is employed so that the glass meshing between the A and B pillars can be controlled; the glass holder moves in the x- and z-directions and the belt molding moves in the y-direction. An impact hammer test was adopted for investigating door glass rattle. The frequency response obtained via impact hammer testing is analyzed by varying the glass support points and important factors that should be considered in early design stages are obtained. The second study is about optimizing vibration absorption.
Technical Paper

Study on Characteristics of Motor Output Power Depending on Current Sensor Response in Eco-Friendly Vehicles

2017-03-28
2017-01-1222
The current sensor for motor control is one of the main components in inverters for eco-friendly vehicles. Recently, as the higher performance of torque control has become required, the current sensor measurement error and accuracy of motor controls have become more significant. Since the response time of the sensor affects the motor output power, the response delay of the sensor causes measurement errors of the current. Accordingly, the voltage vector changes, and a motor output power deviation occurs. In the case of the large response delay of the sensor, as motor speed increases, then difference between motoring and generating output power becomes larger and larger. This results in the deterioration of power performance in high-speed operation. The deviation of the voltage vector magnitude is the main cause of motor output power deviation and imbalance through the simulation.
Technical Paper

A Development of the New Mechanism for Preventing Door Opening in Side Impact Test

2017-03-28
2017-01-1459
During a new vehicle development process, there are several requirements for side impact test that should be confirmed. One of the requirements is the prevention of door opening during side impact test. Even though there are many causes for door opening problem, this study deals with inertia effect by impact energy. Until now, there have been two classical methods to prevent car door from opening in side impact. One is the increment of the inertia resistance by increasing the mass of the balance weight and the spring force. The other is the application of the blocking lever. Unfortunately, in spite of our efforts, the door opening problem occurs occasionally. Therefore, to improve the problem fundamentally, this paper proposes a new blocking lever mechanism that work similar to ball-point pen structure. The proposed mechanism fixes the blocking lever when the opening directional inertia force is applied to the door outside handle during side crash.
Technical Paper

A Research on the Prediction of Door Opening by the Inertia Effect during a Side Impact Crash

2016-04-05
2016-01-1532
The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
X