Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Automated Workflow for Efficient Conjugate Heat Transfer Analysis of a Diesel Engine

2021-04-06
2021-01-0402
The internal combustion engine’s performance is affected by in-cylinder combustion processes and heat transfer rates through the combustion chamber walls. Hot spots may affect the reliability and durability of the engine components. Design of efficient and effective coolant systems requires accurate accounting of the heat fluxes into and out of the solid parts during the engine operation. The need to assess the engine’s performance early in the design process has motivated the use of a computational approach to predict such data. A more accurate representation of the engine’s operation is obtained by coupling the thermal, flow, and combustion analysis of the various components, such as the combustion chamber, ports, engine block, and its cooling system. Typically, a stand-alone CFD simulation does not capture the complex nature of the problem, and the manual transfer of data between multiple analyses may lead to an onerous or error-prone workflow requiring multiple user interventions.
Technical Paper

Large-Eddy Simulation and Analysis of Turbulent Flows in a Motored Spark-Ignition Engine

2018-04-03
2018-01-0202
Advanced research in Spark-ignition (SI) engines has been focused on dilute-combustion concepts. For example, exhaust-gas recirculation is used to lower both fuel consumption and pollutant emissions while maintaining or enhancing engine performance, durability and reliability. These advancements achieve higher engine efficiency but may deteriorate combustion stability. One symptom of instability is a large cycle-to-cycle variation (CCV) in the in-cylinder flow and combustion metrics. Large-eddy simulation (LES) is a computational fluid dynamics (CFD) method that may be used to quantify CCV through numerical prediction of the turbulent flow and combustion processes in the engine over many engine cycles. In this study, we focus on evaluating the capability of LES to predict the in-cylinder flows and gas exchange processes in a motored SI engine installed with a transparent combustion chamber (TCC), comparing with recently published data.
X