Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of an Electronic Stability Control Algorithm for All-Terrain Vehicles

2023-04-11
2023-01-0661
An Electronic Stability Control algorithm has been developed for All-Terrain Vehicles. The algorithm is implemented on SEA’s Robotic Test Driver which has been customized to drive ATVs unmanned. The ESC algorithm is incorporated in the real-time controller. When activated, ESC monitors vehicle states and when they exceed pre-determined thresholds, ESC intervenes by dropping throttle and applying the vehicle’s brakes. The intention of this algorithm is to prevent yaw instability and ultimately limit the vehicle’s roll angle. ESC is implemented on two vehicles, which exhibit varying degrees of understeer. Test data is provided to illustrate the determination in setting threshold limits. The efficacy of the ESC is demonstrated by showing the system being enabled and disabled.
Technical Paper

Test Results of Tires for All-Terrain Vehicles from a Flat-Trac® Machine

2023-04-11
2023-01-0671
This paper presents tire data from an All-Terrain Vehicle (ATV). Data is collected on a Flat-Trac® machine where force and moment data were collected for three tires: one front tire and two rear tires. Tests were conducted at slip angles of +/-28 degrees, varying normal loads and inclinations angles. Additionally, tests were conducted at varying levels of inflation pressure. Key parametric data such as aligning moment, cornering and vertical stiffness levels are presented. One key finding from this study is that, in general, as inflation pressure increases cornering and aligning moment stiffness decreases. This effect is counter to typical passenger vehicle tires, where higher inflation pressure usually results in higher stiffness levels. Using results from the tire test data, understeer calculations are made for a vehicle under varying loading conditions.
Technical Paper

Engine Idle Creep Testing and Modeling of Vehicles Equipped with CVT, DCT, and Conventional Automatic Transmissions

2023-04-11
2023-01-0620
Determining impact speeds is an important factor in any accident reconstruction. Event data recorders are now commonplace in on-road vehicles and provide an added tool for the accident reconstructionist. However, in low-speed collisions where impact severity is often important, event data recorders fail to record data as the minimum threshold for impact severity sometimes is not met. Alternatively, damage-based methods may be ineffective in quantifying the severity of the impact due to a lack of defined vehicle crush damage. These types of scenarios oftentimes present themselves as a bullet vehicle in the beginning processes of accelerating from a stop or when a stopped target vehicle is rear-ended from behind by the bullet vehicle.
Technical Paper

Vehicle Dynamics Modeling of Commercial Vehicle Steer Axle Tire Disablements at Highway Speeds

2023-04-11
2023-01-0665
There have been many studies regarding the stability of vehicles following a sudden air loss event in a tire. Previous works have included literature reviews, full-scale vehicle testing, and computer modeling analyses. Some works have validated physics-based computer vehicle simulation models for passenger vehicles and other works have validated models for heavy commercial vehicles. This work describes a study wherein a validated vehicle dynamics computer model has been applied to extrapolate results to higher event speeds that are consistent with travel speeds on contemporary North American highways. This work applies previously validated vehicle dynamics models to study the stability of a five-axle commercial tractor-semitrailer vehicle following a sudden air loss event for a steer axle tire. Further, the work endeavors to understand the analytical tire model for tires that experience a sudden air loss.
Technical Paper

Effects of Anti-Sway Bar Separation on the Handling Characteristics of a SUV

2021-04-06
2021-01-0976
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability.
Journal Article

Facility for Complete Characterization of Suspension Kinematic and Compliance Properties of Wheeled Military Vehicles

2020-04-14
2020-01-0175
As part of their ongoing efforts to model and predict vehicle dynamics behavior, the US Army’s Ground Vehicle Systems Center procured a facility in two phases. The facility is called the Suspension Parameter Identification and Evaluation Rig (SPIdER) and has a capacity covering all of the military’s wheeled vehicles, with vehicle weights up to 100,000 lbs (45,400 kg), up to 150 inches wide, with any number of axles. The initial phase had the ability to measure bounce and roll kinematic and compliance properties. The SPIdER is the companion machine to the Vehicle Inertia Parameter Measuring Device (VIPER) which measures the inertia properties of vehicles of similar size. In 2015, the final phase of the SPIdER was completed. This phase includes ground plane wheel pad motion so that lateral, longitudinal, and aligning moment compliance and kinematic properties can be measured.
Journal Article

Driver’s Response Prediction Using Naturalistic Data Set

2019-04-02
2019-01-0128
Evaluating the safety of Autonomous Vehicles (AV) is a challenging problem, especially in traffic conditions involving dynamic interactions. A thorough evaluation of the vehicle’s decisions at all possible critical scenarios is necessary for estimating and validating its safety. However, predicting the response of the vehicle to dynamic traffic conditions can be the first step in the complex problem of understanding vehicle’s behavior. This predicted response of the vehicle can be used in validating vehicle’s safety. In this paper, models based on Machine Learning were explored for predicting and classifying driver’s response. The Naturalistic Driving Study dataset (NDS), which is part of the Strategic Highway Research Program-2 (SHRP2) was used for training and validating these Machine Learning models.
Technical Paper

The Effect of Application Air Pressure on Brake Stroke Measurements from 70 to 125 psi

2015-09-29
2015-01-2833
Brake chamber construction allows for a finite stroke for pushrods during brake application. As such, the Federal Motor Carrier Safety Regulations (FMCSRs) mandate maximum allowable strokes for the various chamber types and sizing. Brake strokes are often measured during compliance inspections and post-accident investigations in order to assess vehicle braking performance and/or capability. A number of studies have been performed, and their results published, regarding the effect of brake stroke and function on braking force and heavy truck stopping performance [1] through [4]. All of the studies have relied on a brake supply pressure of 100 pounds per square inch (psi). When brake strokes are measured in the field, following the Commercial Vehicle Safety Alliance (CVSA) procedure, the application pressure is prescribed to be maintained between 90 and 100 psi.
Journal Article

Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics

2015-06-15
2015-01-2189
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
Journal Article

Advanced Control Strategies for a Roll Simulator - A Feedback Linearization Technique Explored

2013-04-08
2013-01-0683
This paper presents a feedback linearization control technique as applied to a Roll Simulator. The purpose of the Roll Simulator is to reproduce in-field rollovers of ROVs and study occupant kinematics in a laboratory setting. For a system with known parameters, non-linear dynamics and trajectories, the feedback linearization algorithm cancels out the non-linearities such that the closed-loop dynamics behave in a linear fashion. The control inputs are computed values that are needed to attain certain desired motions. The computed values are a form of inverse dynamics or feed-forward calculation. With increasing system eigenvalue, the controller exhibits greater response time. This, however, puts a greater demand on the translational actuator. The controller also demonstrates that it is able to compensate for and reject a disturbance in force level.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Journal Article

The Design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for Military Vehicles

2013-04-08
2013-01-0696
This paper describes the mechanical design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for wheeled military vehicles. This is a facility used to measure quasi-static suspension and steering system properties as well as tire vertical static stiffness. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. The axle frame holds wheel pads (representing the ground plane) for each wheel. Specific design considerations are presented on the wheel pads and the measurement system used to measure wheel center motion. The constraints on the axle frames are in the form of a simple mechanism that allows roll and bounce motion while constraining all other motions. An overview of the design is presented along with typical results.
Technical Paper

Brake Characteristics for a Bobtail Vehicle

2013-04-08
2013-01-0792
Bobtail testing data published in the literature are limited and the difference in deceleration of a bobtail configuration compared to a tractor-trailer has not been fully evaluated in the past. The authors seek to increment and update previous research on the topic. This paper presents detailed braking characteristic information obtained from full scale instrumented testing of a bobtail vehicle at various speeds. Brake timing is analyzed for the tested condition to determine the overall braking characteristics. The findings of this study are compared to 1) other testing performed with the same tractor configured with a trailer at different loading conditions and 2) to results published in literature for both bobtail vehicles and other loading conditions for both 6×4 and 4×2 tractor axle configurations.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
Journal Article

Application of Air Brake Performance Relationships in Accident Reconstruction and Their Correlation to Real Vehicle Performance

2012-04-16
2012-01-0609
This research paper builds onto the wealth of technical information that has been published in the past by engineers such as Flick, Radlinski, and Heusser. For this paper, the pushrod force versus chamber pressure data published by Heusser are supplemented with data taken from brake chamber types not reported on by Heusser in 1991. The utility of Heusser's braking force relationships is explored and discussed. Finally, a straightforward and robust method for calculating truck braking performance, based on the brake stroke measurements and published heavy truck braking test results, is introduced and compared to full-scale vehicle test data.
Technical Paper

Establishing Occupant Response Metrics on a Roll Simulator

2012-04-16
2012-01-0099
This paper presents the results of an in-depth study of the measurement of occupant kinematic response on the S-E-A Roll Simulator. This roll simulator was built to provide an accurate and repeatable test procedure for the evaluation of occupant protection and restraint systems during roll events within a variety of occupant compartments. In the present work this roll simulator was utilized for minimum-energy, or threshold type, rollover events of recreational off-highway vehicles (ROVs). Input profiles for these tests were obtained through a separate study involving autonomous full vehicle tests [1]. During simulated roll events anthropomorphic test device (ATD) responses were measured using on-board high speed video, an optical three-dimensional motion capture system (OCMS) and an array of string potentiometers.
Technical Paper

Validation of a Roll Simulator for Recreational Off-Highway Vehicles

2012-04-16
2012-01-0241
A two-degree-of-freedom Roll Simulator has been developed to study the occupant kinematics of Recreational Off-Highway Vehicles (ROVs). To validate the roll simulator, test data was collected on a population of ROVs on the market today. J-turn maneuvers were performed to find the minimum energy limits required to tip up the vehicles. Two sets of tests were performed: for the first set, 10 vehicles were tested, where the motion was limited by safety outriggers to 10-15 degrees of roll; and for the second set, three of these vehicles were re-tested with outriggers removed and the vehicle motion allowed to reach 90 degrees of roll. These quarter-turn rollover tests were performed autonomously using an Automatic Steering Controller (ASC) and a Brake and Throttle Robot (BTR). Lateral and longitudinal accelerations as well as roll rate and roll angle were recorded for all tests.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Technical Paper

Addressing Drivability in an Extended Range Electric Vehicle Running an Equivalent Consumption Minimization Strategy (ECMS)

2011-04-12
2011-01-0911
The EcoCAR Challenge team at The Ohio State University has designed an extended-range electric vehicle capable of 50 miles all-electric range via a 22 kWh lithium-ion battery pack, with range extension and limited parallel operation supplied by a 1.8 L dedicated E85 engine. This vehicle is designed to drastically reduce fuel consumption, while meeting Tier II Bin 5 emissions standards. This vehicle design is implemented in a GM crossover utility vehicle as part of the EcoCAR Challenge. This paper explains the implementation of the vehicle's control strategy in order to maintain high efficiency and improve drivability. The vehicle control strategy employs both distinct operating modes and an Equivalent Consumption Minimization Strategy (ECMS) to find the most efficient operating point. The ECMS strategy does an online search for the most efficient torque split in order to meet the driver's command.
X