Refine Your Search

Topic

Author

Search Results

Technical Paper

New Equivalent Static Load (ESL) Creation Procedure for Complete Vehicle

2024-06-12
2024-01-2944
By analyzing the dynamic distortion in all body closure openings in a complete vehicle, a better understanding of the body characteristics can be achieved compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures. The body response is measured with the so-called Multi Stethoscope (MSS) when driving a vehicle on a rough pavé road (cobble stone). The MSS is measuring the distortion in each opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint ODF and used as assessment criteria within Solidity and Perceived Quality. By applying the Principal Component Analysis (PCA) on the time history of the distortion, a Dominant Distortion Pattern (DDP) can be identified.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Influence of Iron and Manganese on the Mechanical Properties and Microstructure of a Recycled EN AC-43200 Aluminium-Silicon Alloy

2023-11-05
2023-01-1880
The work investigates the effect of different Iron and Manganese contents in ad-hoc cast specimens made from recycled EN AC-43200 alloy. Tensile tests and metallographic analyses coupled with energy dispersive X-ray spectroscopy measurements are carried out to elucidate the interplay between the microstructure and the quasi-static properties of the Aluminium-Silicon alloy under investigation. A strong correlation between the composition and morphology of Fe/Mn -based intermetallic precipitates and tensile properties is demonstrated. Moreover, it is found that specific intermetallic phases are present only for certain, relative and/or absolute contents of Fe and Mn.
Technical Paper

Characterization of Vertical Dynamics of a Multi-Purpose Tractor with Static and Dynamic Experimental Tests

2023-04-11
2023-01-0177
Multi-purpose agricultural tractors are vehicles that are usually used in rough paths and on off-road situations characterized by strong slope variations. The main feature of this kind of vehicles is the stability in working conditions to avoid overturning while it is on duty. This characteristic is given by the interaction between the suspension system and the vehicle frame. Due to the limited size of this kind of vehicle, the stability feature could be given by chassis deformation or using a two-piece frame connected by a spherical joint. This paper presents the validation of a numerical lumped-parameters model able to reproduce the vertical dynamics of a multi-purpose tractor featured by a yielding chassis. The unknown model parameters have been estimated firstly with static tests to study the vertical tire and suspension stiffnesses. The dynamic tests using a four-post-test rig have been performed to tune the unknown dynamic parameters.
Technical Paper

Assessment of Actuator Line and Rotor Disk as Alternative Approaches for the Numerical Simulation of Rotating Wheels

2023-04-11
2023-01-0844
Wheel and wheelhouses contribute up to 20-30% of the aerodynamic drag of passenger cars. Simulating the flow field around wheels is challenging due to the complexity of the flow structures generated by tires and rims, wheel rotation, tire deformation and contact with the ground. High accuracy is usually obtained with transient simulations that treat rim rotation with the Sliding Mesh (SM) approach, which is also computationally expensive. Previous studies have confirmed that the application of a tangential velocity component to the rim surface is unphysical for open rims, while a Moving Reference Frame (MRF) is lacking accuracy and the averaged results depend on the initial spokes position. These methods do not consider the dynamic nature of the problem. This work proposes the use of the Actuator Line (AL) and Rotor Disk (RD) approaches as alternatives for simulating open rims with much lower computational cost.
Journal Article

Cathodic Protection of Brake System Components

2021-10-11
2021-01-1275
The work investigates the use of cathodic protection -based strategies (e.g. sacrificial anodes) with the aim of extending the corrosion resistance of Aluminum components to be used in disc brake systems. Lab-scale electrochemical measurements, including voltammetry and zero resistance ammetry (ZRA), are used to: a) define the requirements of a cathodic protection system for a 42200 Aluminum alloy; b) evaluate the protection capability of a Zn-based sacrificial anode; and c) demonstrate an extended corrosion resistance of the protected part even in the presence of a galvanic coupling, with respect to the unprotected condition.
Technical Paper

Tire and Brake Interaction - A New Test Rig to Study Wheel Locking

2021-04-06
2021-01-0972
The paper investigates the dynamics of the tire and brake during hard braking or wheel locking, from the view point of a brake manufacturer. A new test rig, named BRAD (BRembo Automotive Dynamometer) is presented which measures the forces acting both at the brake and at the tire-ground interface. Lateral forces are not measured. In the test rig, the ground is represented by a drum. The features of the test rig are presented. The measurement accuracy is declared. The first result is that, near wheel locking, a substantial part of the braking power is generated by the tire and not by the brake. The test rig quantifies such a partitioning of brake power, which is important for current and future electric motorsport activities. Some 30% of the braking power is due to tire during hard braking. The second result is that, due to such important braking power at the tire, the tire is heated up, which increases considerably the maximum friction.
Journal Article

Anodization: Recent Advancements on Corrosion Protection of Brake Calipers

2020-10-05
2020-01-1626
Brake calipers for high-end cars are typically realized using Aluminum alloys, with Silicon as the most common alloying element. Despite the excellent castability and machinability of Aluminum-Silicon alloys (AlSix), anodization is often required in order to increase its corrosion resistance. This is particularly true in Chlorides-rich environments where Aluminum can easily corrode. Even if anodization process is known for almost 100 years, anodization of AlSix -based materials is particularly challenging due to the presence of eutectic Silicon precipitates. These show a poor electric conductivity and a slow oxidation kinetics, leading to inhomogeneous anodic layers. Continuous research and process optimization are required in order to develop anodic layers with enhanced morphological and electrochemical properties, targeting a prolonged resistance of brake calipers under endurance corrosive tests (e.g. >1000 hours Neutral Salt Spray (NSS) tests).
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Journal Article

Electric Motor for Brakes – Optimal Design

2020-04-14
2020-01-0919
A multi-objective optimal design of a brushless DC electric motor for a brake system application is presented. Fifteen design variables are considered for the definition of the stator and rotor geometry, pole pieces and permanent magnets included. Target performance indices (peak torque, efficiency, rotor mass and inertia) are defined together with design constraints that refer to components stress levels and temperature thresholds, not to be surpassed after heavy duty cycles. The mathematical models used for optimization refer to electromagnetic field and related currents computation, to thermo-fluid dynamic simulation, to local stress and vibration assessment. An Artificial Neural Network model, trained with an iterative procedure, is employed for global approximation purposes. This allows to reduce the number of simulation runs needed to find the optimal configurations. Some of the Pareto-optimal solutions resulting from the optimal design process are analysed.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Technical Paper

Tempered Wire Fatigue Testing

2019-04-02
2019-01-0532
A new bench for the rotating bending fatigue tests of tempered steel wires is presented. The new bench is used to check the spring wire just before it is finally winded to realize a spring. The bench is basically a four-point bending machine. There are two main differences with respect to current bending machines. The first one is that the focus is on semi-finished components (more than 1 meter long), rather than standard small-scale specimens. The second one is that there is a non-linear configuration of the tested component due to its length. The bench design has provided some unreferenced features that make the bench quite accurate and effective in producing quick fatigue assessments. A rotor-dynamic study has allowed to perform tests at 50 Hz. As a preliminary application, some fatigue bending tests of tempered steel wires are described and discussed.
Technical Paper

Instrumented Steering Wheel for Accurate ADAS Development

2019-04-02
2019-01-1241
We introduce in this paper a new Instrumented Steering Wheel (ISW) for ADAS development. The ISW has been designed, constructed and employed with satisfactory results. The ISW is able to measure three forces, three moments and the grip force at each hand of the driver. The ISW has been used for ADAS activities on an instrumented road vehicle. The aim was to use both the vehicle states and the ISW data for evaluating the driver behaviour. Two research activities were performed. The first activity refers to monitoring the driver behaviour during tests on a track. The second activity refers to the use of haptic ISWs, able to improve the ADAS systems. Referring to the first activity, the greatest majority of drivers applied always the same sequence of forces (pull, radial, tangential) either during emergency manoeuvres, either during slow speed curving.
Journal Article

Tire Ply-Steer, Conicity and Rolling Resistance - Analytical Formulae for Accurate Assessment of Vehicle Performance during Straight Running

2019-04-02
2019-01-1237
The aim of the paper is to provide simple and accurate analytical formulae describing the straight motion of a road vehicle. Such formulae can be used to compute either the steering torque or the additional rolling resistance induced by vehicle side-slip angle. The paper introduces a revised formulation of the Handling Diagram Theory to take into account tire ply-steer, conicity and road banking. Pacejka’s Handling Diagram Theory is based on a relatively simple fully non-linear single track model. We will refer to the linear part of the Handling Diagram, since straight motion will be considered only. Both the elastokinematics of suspension system and tire characteristics are taken into account. The validation of the analytical expressions has been performed both theoretically and after a subjective-objective test campaign. By means of the new and unreferenced analytical formulae, practical hints are given to set to zero the steering torque during straight running.
Technical Paper

Performance and Exhaust Emissions Analysis of a Diesel Engine Using Oxygen-Enriched Air

2018-09-10
2018-01-1785
Oxygen enriched air (EA) is a well known industrial mixture in which the content of oxygen is higher respect the atmospheric one, in the range 22-35%. Oxygen EA can be obtained by desorption from water, taking advantage of the higher oxygen solubility in water compared to the nitrogen one, since the Henry constants of this two gases are different. The production of EA by this new approach was already studied by experimental runs and theoretical considerations. New results using salt water are reported. EA promoted combustion is considered as one of the most interesting technologies to improve the performance in diesel engines and to simultaneously control and reduce pollution. This paper explores, by means of 3-dimensional computational fluid dynamics simulations, the effects of EA on the performance and exhaust emissions of a high-speed direct-injection diesel engine.
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Technical Paper

Suspension Systems: Some New Analytical Formulas for Describing the Dynamic Behavior

2018-04-03
2018-01-0554
The paper presents some new and unreferenced analytical formulae describing the dynamic behaviour of the suspension system of road or off-road vehicles. The quarter car model (2 degrees of freedom) is considered, the suspension can be either passive or active. Passive suspensions can be simplified as the spring-damper combination or the spring-damper combination with an additional in series spring (representing, e.g., the rubber bushing at the top of a McPherson strut or the rubber bushing at the end joints of the damper). The mathematical system is linear and the excitation is given by a random stationary and ergodic process. The standard deviations in analytical form are given referring to, respectively, the vehicle body acceleration, the relative displacement between sprung and unsprung mass, and the force at the ground. The so called invariant points of the frequency response functions are derived for both active and passive suspension.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
X