Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling of Regeneration Dynamics in Gasoline Particulate Filters and Sensitivity Analysis of Numerical Solutions

2022-03-29
2022-01-0556
Gasoline direct-injection (GDI) engine technology improves vehicle fuel economy while decreasing CO2 emissions. The main drawback of GDI technology is the increase in particulate emissions compared to the commonly used port fuel injection technologies. Today’s adopted strategy to limit such emissions relies upon the use of aftertreatment gasoline particulate filters (GPFs). GPFs reduce particulates resulting from fuel combustion. Soot oxidation (also known as regeneration) is required at regular intervals to clean the filter, maintain a consistent soot trapping efficiency, and avoid the formation of soot plugs in the GPF channels. In this paper, starting from a multiphysics GPF model accounting for mass, momentum, and energy transport, a sensitivity analysis is carried out to choose the best mesh refinement, time step, and relative tolerance to ensure a stable numerical solution of the transport equations during regeneration while maintaining low computational time.
Technical Paper

Realizing Stoichiometric, Natural Gas-Fueled Combustion in Diesel Engines

2018-04-03
2018-01-1148
For high-load applications, natural gas represents a clean burning, readily available, and relatively inexpensive alternative to number 2 Diesel fuel. However, the fuel’s poor ignitability has previously limited implementation to spark ignited and dual-fueled engines. These approaches suffer from reduced peak load and high engine-out particulate emissions, respectively, requiring lean operation and expensive aftertreatment to meet regulatory standards. A high-temperature combustion strategy can overcome the difficult ignitibility, allowing for true Diesel-style combustion of pure methane-the least ignitable and least sooting component of natural gas. In order to achieve this result, a compression system was designed to supply fuel at pressures suitably high to achieve good mixing and short injection durations, and a solenoid-actuated Diesel fuel injector was modified to function at these pressures with a gaseous fuel.
Journal Article

Exploring the Pathway to High Efficiency IC Engines through Exergy Analysis of Heat Transfer Reduction

2013-04-08
2013-01-0278
Heat transfer is one of the largest causes of exergy destruction in modern engines. In this paper, exergy distribution modeling was used to determine the potential of reduced engine heat transfer to provide significant gains in engine efficiency. As known from prior work, of itself, reducing heat transfer creates only a small increase in efficiency-most of the exergy is redirected into the exhaust stream-requiring both mechanical and thermal recovery of the exhaust exergy. Mechanical regeneration, through turbocharging and over-expansion, can lead to efficiencies exceeding 50%. Adding thermal regeneration, through high enthalpy steam injection or a bottoming cycle, can increase the efficiency potential to approximately 60%. With implementation of both mechanical and thermal regeneration, the only remaining cause of substantial exergy destruction is the combustion process.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

2010-10-25
2010-01-2246
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Technical Paper

A Multi-dimensional Flamelet Model Framework Applied to Split-injection DI Diesel Engines

2009-06-15
2009-01-1917
A general model framework for investigating various injection strategies in compression ignition engines with both mixture and thermal inhomogeneities is presented using an extended representative interactive flamelet model. The equations describing evolution of chemistry are written for a scalar phase space of either one or two dimensions and an approach for modeling multiple injections is given. The combustion model is solved interactively with the turbulent flow field by coupling with a Reynolds-Averaged Navier-Stokes (RANS) solver. The model is applied in the simulation of a split-injection diesel engine and results are compared to experimental data obtained from a single cylinder research engine.
Journal Article

Dual-Wavelength PLIF Measurements of Temperature and Composition in an Optical HCCI Engine with Negative Valve Overlap

2009-04-20
2009-01-0661
Negative valve overlap (NVO) is a valve strategy employed to retain and recompress residual burned gases to assist HCCI combustion, particularly in the difficult regime of low-load operation. NVO allows the retention of large quantities of hot residual burned gases as well as the possibility of fuel addition for combustion control purposes. Reaction of fuel injected during NVO increases charge temperature, but in addition could produce reformed fuel species that may affect main combustion phasing. The strategy holds potential for controlling and extending low-load HCCI combustion. The goal of this work is to demonstrate the feasibility of applying two-wavelength PLIF of 3-pentanone to obtain simultaneous, in-cylinder temperature and composition images during different parts of the HCCI/NVO cycle. Measurements are recorded during the intake and main compression strokes, as well as during the more challenging periods of NVO recompression and re-expansion.
Journal Article

Effects of LIF Tracers on Combustion in a DI HCCI Engine

2008-10-06
2008-01-2407
Many experimental efforts to track fuel-air-residual mixture preparation in internal combustion engines have employed laser induced fluorescence (LIF) of tracers. Acetone and 3-pentanone are often chosen as tracers because of their relatively strong LIF signal, weak quenching, and reasonable match to thermo-chemical properties of common fuels such as iso-octane. However, the addition of these tracers to fuel-air mixtures could affect combustion behavior. In this work, we assess these effects to better understand limitations of tracer-based engine measurements. The effects of tracer seeding on combustion phasing, duration, and variation are studied in an HCCI engine using a recompression strategy to accommodate single- and multi-stage-ignition fuels.
Technical Paper

Numerical Investigation of Unburnt Hydrocarbon Emissions in a Homogeneous-Charge Late-Injection Diesel-Fueled Engine

2008-06-23
2008-01-1666
Strict NOx and soot emission regulations for Diesel engines have created an interest in low-temperature partially-homogeneous combustion regimes in both the US and Europe. One strategy, Homogeneous-Charge Late-Injection (HCLI) combustion utilizes 55% or more cooled external Exhaust Gas Recirculation (EGR) with a single Direct Injection strategy to control ignition timing. These engines are operated at low temperatures to ensure near zero NOx emissions, implying that fuel in the thermal boundary layers will not reach sufficient temperature to fully oxidize, resulting in Unburnt Hydrocarbon (UHC) and CO emissions. Of particular interest to HCLI engines are the UHC's that are not fully oxidized by the Diesel Oxidation Catalyst (DOC). Experimental measurements reveal that at average equivalence ratios greater than 0.8, methane is the single largest tailpipe-out UHC emission.
Technical Paper

Optimization of Recompression Reaction for Low-Load Operation of Residual-Effected HCCI

2008-04-14
2008-01-0016
In-cylinder pre-processing (or recompression reaction) of direct-injected fuel during the negative valve overlap period of a retention-strategy HCCI engine is investigated for extension of the low-load limit of operation. Experimental studies of three variables (compression ratio, pilot injection timing, and pilot injection amount) were conducted in order to optimize the effects of recompression reaction by changing the sensible and chemical energy environment during recompression. The results from compression ratio variation show that there exist optimum values of equivalence ratio and extent of recompression reaction, which expand the low-load operating region. The pilot injection timing variation demonstrates good controllability of the extent of recompression reaction by effectively changing the in-cylinder residence time of the pilot-injected fuel.
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Technical Paper

Simultaneous Measurement of In-Cylinder Temperature and Residual Gas Concentration in the Vicinity of the Spark Plug by Wavelength Modulation Infrared Absorption

2007-04-16
2007-01-0639
This paper presents a new measurement technique for in-cylinder gas temperature and residual gas concentration during the compression stroke of an internal combustion (IC) engine. This technique is based on the infrared absorption of water vapor by a wavelength modulated laser. Wavelength modulation spectroscopy with second harmonic detection (WMS-2f) was adopted to enable the short-path measurements over a wide range of temperatures and pressures corresponding to the late compression stroke in a typical automotive engine. The WMS-2f signal is detected through a bandpass filter at a width of 7.5 kHz, enabling crank angle-resolved measurements. The temperature is determined from the ratio of optical absorption for two overtone transitions of water vapor in the intake gas mixture, and the H2O concentration is determined from this inferred temperature and the absorption for one of the transitions.
Technical Paper

FTP and US06 Performance of Advanced High Cell Density Metallic Substrates as a Function of Varying Air/Fuel Modulation

2003-03-03
2003-01-0819
The influence of catalyst volume, cell density and precious metal loading on the catalyst efficiency were investigated to design a low cost catalyst system. In a first experiment the specific loading was kept constant for a 500cpsi and a 900cpsi substrate. In a second experiment the palladium loading was reduced on the 900cpsi substrate and the same PM loading was applied to a 1200cpsi substrate with lower volume. Finally the loading was further reduced for the 1200cpsi substrate. The following parameters were studied after aging: Catalyst performance of standard cell density compared to high cell density technology Light-off performance and catalyst efficiency as a function of Palladium loading and substrate cell density Catalyst efficiency as a function of AFR biasing The performance of the aged catalysts was investigated in a lambda sweep test and in light-off tests at an engine bench.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
Technical Paper

Reduction of NOx in Lean Exhaust by Selective NOx-Recirculation (SNR-Technique) Part I: System and Decomposition Process

1998-10-19
982592
The SNR-technique is a new NOx aftertreatment system for lean burn gasoline and diesel applications. The objective of SNR is NOx removal from lean exhaust gas by NOx adsorption and subsequent selective external recirculation and decomposition of NOx in the combustion process. The SNR-project is composed of two major parts. Firstly the development of NOx adsorbents which are able to store large quantities of NOx in lean exhaust gas, and secondly the NOx decomposition by the combustion process. Emphasis of this paper is the investigation of NOx reduction in the combustion process, including experimental investigation and numerical simulation. The NOx decomposition process has been proven in diesel and lean-burn gasoline engines. Depending on the type of engine NOx-conversion rates up to 90 % have been observed. Regarding the complete SNR-system, including the efficiency of the adsorbing material and the NOx decomposition by the combustion, a NOx removal of more than 50% is achievable.
Technical Paper

Reduction of NOx in Lean Exhaust by Selective NOx-Recirculation (SNR-Technique) Part II: NOx Storage Materials

1998-10-19
982593
Selective NOx recirculation (SNR), involving adsorption, selective external recirculation and decomposition of the NOx by the combustion process, is itself a promising technique to abate NOx emissions. Three types of materials containing Ba: barium aluminate, barium tin perovskite and barium Y-zeolites have been developed to adsorb NOx under lean-burn or Diesel conditions, with or without the presence of S02. All these materials adsorb NO2 selectively (lean-burn conditions), and store it as nitrate/nitrite species. The desorption takes place by decomposition of these species at higher temperatures. Nitrate formation implies also sulfate formation in the presence of SO2 and SO3, while the NO2/SO2 competition governs the poisoning of such catalysts.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards

1998-02-23
980421
It has long been recognized that the key to achieving stringent emission standards such as ULEV is the control of cold-start hydrocarbons. This paper describes a new approach for achieving excellent cold-start hydrocarbon control. The most important component in the system is a catalyst that is highly active at ambient temperature for the exothermic CO oxidation reaction in an exhaust stream under net lean conditions. This catalyst has positive order kinetics with respect to CO for CO oxidation. Thus, as the concentration of CO in the exhaust is increased, the rate of this reaction is increased, resulting in a faster temperature rise over the catalyst.
Technical Paper

The Impact of Fuel Sulfur Level on FTP Emissions - Effect of PGM Catalyst Type

1997-02-24
970737
With the advent of stricter vehicle emission standards, the improvement of three way catalyst performance and durability remains a pressing issue. A critical consideration in catalyst design is the potential for variations in fuel sulfur levels to have a significant impact on the ability to reach TLEV, LEV, and ULEV emission levels. As a result, a better understanding of the role of PGM composition in the interplay between thermal durability and sulfur tolerance is required. Three way catalysts representative of standard Pd-only, Pd/Rh and Pt/Rh formulations were studied over a variety of aging and evaluation conditions. The parameters investigated included aging temperature, air fuel ratio and sulfur level. Evaluations were performed on a 1994 TLEV vehicle using different sulfur level fuels. The effect of PGM loading was also included within the study.
Technical Paper

Optimisation of Precious Metal Loadings in Automotive Catalysts Using Response Surface Methodology

1996-10-01
961907
The effect of changing catalyst precious metal ratios and loadings on close coupled catalytic converter efficiencies has been studied. The three precious metals were platinum, palladium and rhodium. The specific matrix used for the development of response surface models is a central composite design and provides the capability of visually optimising the precious metal loadings. Catalysts were evaluated using perturbed scans. lightoff curves from the dynamometer aged, and vehicle emission tests. These scans show percent conversion efficiencies of the three legislated gases; HC, CO and NOx, over a range of Air Fuel Ratios (λ). Whilst lean and rich lightoff curves provide indications of conversion efficiencies at varying temperatures. Prior to testing the catalysts were aged, using an accelerated dynamometer ageing process, to 80K simulated kilometres. The catalysts were then fitted to a vehicle and chassis roll emission tests conducted.
X