Refine Your Search

Topic

Search Results

Technical Paper

Indian Cooperative Intelligent Transport Systems

2024-01-16
2024-26-0182
In response to the growing need for increased mobility and road safety, India, like other developing nations, is placing a high focus on modernizing its transport infrastructure. This report performs a thorough technical analysis of the challenges and implementation issues that were encountered when deploying Intelligent Transportation Systems (ITS) in India. This paper provides valuable information about successful ITS deployment and the unique challenges faced in the Indian context, drawing on global research and case studies. A detailed understanding of cutting-edge technologies and how they integrate with current infrastructure is essential for India's adoption of ITS to be successful. Collaboration with a range of stakeholders, including governmental organizations, transportation authorities, and technology businesses, is essential for effective deployment. Using examples from around the world, this study intends to find the best stakeholder management practices.
Technical Paper

Implementation of IR Cut and Solar Green Glass to Optimize the Heat Load for Air Conditioning in Electric Buses

2023-09-14
2023-28-0006
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating.
Technical Paper

Electro-Thermal Simulation Methodology for Battery Thermal Management System (BTMS) Performance Evaluation of Li-Ion Battery Electric Vehicles

2023-09-14
2023-28-0005
In the recent years, Hybrid and Electric Vehicles (EVs) have gained attention globally due to conventional non-renewable fuels becoming expensive and increasing pollution levels in the environment. Li-ion battery EV’s are most popular because of their better power density, spe. energy density and thermal stability. With the advent of battery EV’s, concerns regarding thermal safety of vehicle and its occupants has grown among the prospective customers. Temperature plays an important role in the performance of the Li-ion battery which includes cell capacity, charge output, vehicle range, mechanical life of the battery etc. For Li-ion cells, optimum operating range should be between 15-35 °C [1], and all cells must also be maintained within a ±5 °C variation band. Computational Fluid Dynamics (CFD) simulation can be used to get better insight of cell temperature inside battery. But CFD simulation process is complex, time consuming involving multi-physics and exhaustive computations.
Technical Paper

Development of Compact Battery Cooling System with Smart Diagnosis & Troubleshooting Tool for Small Commercial Vehicle

2023-09-14
2023-28-0028
Battery cooling system plays a vital role in all kind of Electric vehicles. For Indian applications where vehicles will be subjected to slower speeds due to heavy traffic, higher ambient conditions and excess loading pattern in commercial vehicles, designing a Battery cooling system (BCS) is a challenging task. There are various options for cooling of battery i.e. Natural air cooled, forced air cooled, indirect cooling. This paper discusses about indirect coolant based cooling of battery of a small commercial vehicle. Battery cooling system works on the principle of Indirect cooling with the combination of vapor compression cycle and water-coolant mixture path. R134a gas used for VCRS system and for cooling system used 50-50% water glycol coolant mixture. For this type of battery cooling system typically There are challenges of packaging of various battery cooling parts, hose routing, pipe bends which may result in de aeration issues.
Technical Paper

Achievement of Superior Cabin Comfort and Maximising Energy Efficiency Using EXV in BEVs

2023-09-14
2023-28-0022
The global and Indian automotive industry is transitioning from use of Internal Combustion Engine (ICE) vehicles towards Battery Electric Vehicles (BEVs). BEV applications with high voltage (HV) battery require optimal thermal management to have a longer life, higher efficiency and to deliver superior year-round performance. In most electric vehicles, the Heating Ventilation and Air Conditioning (HVAC) system operates thru a dual loop; one loop for maintaining desired cabin comfort and a second loop to ensure optimum cell temperature for HV battery operation at varying climatic conditions, which the vehicle experiences over different seasons of the year This paper evaluates the limitations of a baseline system, in which the HVAC system consists of two parallel low-pressure cooling lines, one for maintaining cabin comfort and another for the purpose of battery cooling.
Technical Paper

A New Gen ‘Super-Efficient Condenser’ for Mobile Air Conditioning Application

2023-09-14
2023-28-0043
In the modern era of automotive industry, occupant comfort inside the cabin is a basic need and no more a luxury feature. With increase in number of vehicles, the expectations from customers are also changing. One of the major expectations from real world customers is quick cabin cooling thru all seasons, particularly when the vehicle is hot soaked and being used in summer conditions. Occupant thermal comfort inside the vehicle cabin is provisioned by a mobile air conditioning (MAC) system, which operates on a vapor compression-based cycle using a refrigerant. The main components of a direct expansion (DX) based MAC system are, a compressor, condenser, evaporator, and expansion valve. Conditioned air is circulated inside the cabin using a blower, duct system and air vents. The AC condenser is the most critical component in AC circuit as it rejects heat, thereby providing for a cooling effect inside the cabin.
Technical Paper

Improvement of AC System for Bus with Tropical/Hot Ambient Application

2023-09-14
2023-28-0016
AC system provides the human comfort inside the cabin of a vehicle but at the expense of consumption of energy from the vehicle. On a global perspective for the bus segment, there is an increased demand for cooling in tropical countries. Optimization needs to be done in existing AC systems w.r.t packaging, cost & performance constraints. Major elements contributing to heat ingress are engine hood, front firewall, windshield & side glasses and bus body parts. Due to these reasons inadequate passenger comfort and poor cool down performance of the vehicle is observed. This paper refers to the reduction of heat ingress through different DOE (Design of Experiment) in the area of design & validation for duct & vent layout, insulation, glass & paint technology, evaporator blowers. The new duct design has been evaluated using a CFD tool by varying various parameters to generate desired output. The integrated use of the modifications was found significant improvement at vehicle level.
Technical Paper

Impact Analysis of an Alternate Environment Friendly Refrigerant Deployed in the Air Conditioning System of IC Engine and Electric Vehicles

2023-09-14
2023-28-0038
Today, most vehicles in developing countries are equipped with air conditioning systems that work with Hydro-Fluoro-Carbons (HFC) based refrigerants. These refrigerants are potential greenhouse gases with a high global warming potential (GWP) that adversely impact the environment. Without the rapid phasedown of HFCs under the Kigali Amendment to the Montreal Protocol and other actions, Earth will soon pass climate tipping points that will be irreversible within human time dimensions. Up to half of national HFC use and emissions are for the manufacture and service of mobile air conditioning (MAC). Vehicle manufacturers supplying markets in non-Article 5 Parties have transitioned from HFC-134a (ozone-safe, GWP = 1400; TFA emissions) to Hydro-Fluoro-Olefin, HFO-1234yf (ozone-safe, GWP < 1; TFA emissions) due to comparable thermodynamic properties. However, the transition towards the phasing down of HFCs across all sectors is just beginning for Article 5 markets.
Technical Paper

Study of Key Attributes of Sustainability of Automobile Solutions in India

2022-10-05
2022-28-0313
The changing mobility landscape of India reveals that the erstwhile transport modes of the 20th century i.e., railways and road buses are making way for airlines, personal vehicles, shared mobility, metro rails. Rapid technological changes, stricter regulations, new transport cultures autonomous, connected, electric and shared (ACES), state-of-the-art and environmental concerns are shaping up the eco-system for automobiles. Despite these challenges roadways and automobiles will continue to be most prominent solution in India for future. But for that, the automobile sector should be agile, innovative, and adaptable to changing eco-system, vigilant to thwart threat of alternate mobility solutions and must provide sustainable solutions for the future. The purpose of this paper to evaluate various mobility solutions, ascertain prominence of upcoming automobile solutions and their sustainability for future in India.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Engine Mount Bracket Design Consideration for Impact Load Requirement

2022-03-29
2022-01-0758
The primary function of an engine mounting bracket is to support the powertrain system in all road conditions without any failure. The mount has to withstand different road conditions and driving maneuvers which exert loads on it. Also, it is challenging to change the mounting locations and types after the engine is built; hence it is paramount to verify the mounting brackets against all abuse loads in the design stage. The Car manufacturers ensure engine mount bracket design meets CAE's (Computer-aided engineering) static and fatigue load cases. The CAE is performed using digital RLD (Road load data) loads. The design checks cumulative strain or stress against specified service life requirements during break and fatigue FOS (Factor of safety) calculations. However, it is difficult to simulate the material's fracture toughness to estimate the effect of the impact load on the mounting bracket.
Technical Paper

A Novel Spot Weld Failure Prediction Methodology in Safety Simulations

2021-09-22
2021-26-0429
Spot-weld joinery plays a major role in maintaining structural integrity of vehicle during an accident scenario. Robust failure definitions are important for accurate prediction of spot-weld failure in crash safety simulations. Spot welds have a complex metallurgical structure, consisting of fusion and heat affected zones. Identifying material failure definitions for huge number of spot-weld joint combinations in a typical Body in White (BIW) of a vehicle is highly challenging. In conventional LS-DYNA-MAT100 material model, spot-weld failure prediction accuracy is limited under complex crash loading scenarios, especially angular and bending load conditions. In order to enhance the failure predictions, a novel mathematical failure model is developed by considering instantaneous resultant loading along with bending moment as a key failure parameter to determine spot weld joint failure.
Technical Paper

Systematic Approach for Optimizing Tailgate Stoppers and Its Location to Prevent Squeak and Rattle

2021-09-22
2021-26-0285
Tailgate stoppers play vital role in exerting preload on the Tailgate latch mechanism and also restrict the relative motion of the Tailgate against vehicle Body in White (BIW). These stoppers act as over-slam dampeners and reduce the transmissibility of vibrations thereby reduce the risk of Squeaks & Rattles (S&R) noises. S&R noises from Tailgate are most annoying to the rear passengers in the vehicle and are recurring in nature. Preventing these issues during design is a challenging task. S&R risk simulations enable us to conduct virtual Design of Experiments (DOEs) and arrive at optimal solutions. This approach helps in reducing the cost of the design changes that are required in the physical prototype at the later stages of product development and save time. The risk evaluation in the simulations is based on the relative displacement at the interfaces of two components.
Technical Paper

Estimation of End of Life of Lithium-Ion Battery Based on Artificial Neural Network and Machine Learning Techniques

2021-09-22
2021-26-0218
Various vehicle manufacturers are launching electric vehicles, which are more sustainable and environmentally friendly. The major component in electric vehicles is the battery, and its performance plays a vital role. Usually, the end of life of a battery in the automobile sector is when the battery capacity reaches 80% of its maximum rated capacity. The capacity of a lithium-ion cell declines with the number of cycles. So, a semi-empirical model is developed for estimating the maximum stored capacity at the end of each cycle. The parameters considered in the model explain the changes in battery internal structure, like capacity losses at different conditions. The capacity estimated using the semi-empirical model is further taken as the inputs for estimating capacity using the Artificial Neural Network (ANN) and Machine Learning (ML) techniques i.e., Linear Regression (LR), Gaussian Process Regression (GPR), Support Vector Machine methods (SVM).
Journal Article

Optimization of Exhaust Muffler Design Variables for Transmission Loss Using Coupling of modeFRONTIER and GT-POWER

2021-08-31
2021-01-1042
Exhaust Noise attenuation is one of the important functions of exhaust muffler. Transmission Loss (TL) is a measure of noise attenuation used in designing exhaust mufflers for NVH. TL is a logarithmic difference between inlet and outlet pressures for unit velocity input at inlet of the muffler and anechoic termination at outlet of the muffler as boundary conditions. TL amplitude and its frequency tuning depends on a combination of various muffler design parameters like volume, length, muffler cross section, pipe cross sections, pipe perforations, number of chambers, baffle perforations, etc. Achieving the desired TL performance with no valleys over a wide frequency range is very challenging. Manual design iterations with large numbers of permutations and combinations of design variables are difficult and time-consuming. It also needs a highly experienced professional to balance TL performance, design variables and design constraints.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Technical Paper

Electro-Magnetic Parking Brake System for Electric Vehicles

2019-01-09
2019-26-0119
Regular vehicle has the advantage of Engine resistance even when it is not fired, hence chances of vehicle roll back on gradients will be minimized. This is not the case for Electric vehicles, which uses an electric motor that does not have any resistance offered to wheels that prevent vehicle roll back on gradient. This leads to increased load on the conventional hydraulic brakes due to absence of engine inertia. Hence, there is a need for a low cost and reliable automatic braking system which can help in holding the vehicle and assists the driver during launch in case he need to stop at a gradient. An Electromagnetic brake (EM brake) system can be used as a solution for the above-mentioned requirement. EM brake can provide hill hold and hill assist effect in addition to automatic parking brake application when the vehicle is turned-off. This system will assist anyone who need to halt the vehicle at a gradient and then relaunch it without much struggle.
Technical Paper

Refurbished and Repower: Second Life of Batteries from Electric Vehicles for Stationary Application

2019-01-09
2019-26-0156
Rising environmental concerns and depleting natural resources have resulted in faster adoption of green technologies. These technologies are pushed by the government of states through certain schemes and policies as to make the orbit shift ensuring greener environment in near future. Major actions can be easily seen in transportation sector. Hybrid Electric Vehicle (EV), EV and Fuel cell EV are being deployed on roads rapidly but even though some challenges are still unsolved such as battery cost, fast charging and life cycle of the automotive battery. Automotive batteries (Lithium ions) are declared as unfit for automotive usage after the loss of 20% to 15% of their initial capacity. Still 80% to 85% of battery capacity can be utilized in stationary applications other than automotive. Stationary application doesn’t demand high current density or energy density from the battery pack as of automotive requirements.
Technical Paper

Designing In-Cab Sound of Vehicles as per the Customer Driving Pattern on Roads

2019-01-09
2019-26-0170
Vehicle refinement from point of view reduction in its Noise, Vibrations and Harshness (NVH) affects customer’s buying decision and it also directly influences his/her driving experience on road at different speeds. Customer voice, however, indicates that a traditional process of developing design solutions is not aligned with the customers’ expectations. Traditionally the load cases for NVH development are focused only on quietness of passengers’ cabin at idling and in 3rd gear wide open throttle cruising on smooth roads. In reality, the Driver of a premium sedan car or a Sports Utility Vehicle (SUV) or a Compact Utility Vehicle (CUV) expects something different than merely the low sound pressure level inside the cabin. His/her driving pattern over a day plays a crucial role. A vehicle-owner wishes to balance various attributes of the in-cab sound and tactile vibrations at a time.
Technical Paper

Methodology for Exhaust System Design Optimization for Light Weight Passenger Vehicles

2019-01-09
2019-26-0269
While designing the exhaust system of passenger car on one hand there is stringent emission regulations, packaging constraints, high NVH performance requirement. On the other hand with lightweight vehicle design there is tremendous pressure on weight reduction of exhaust system while keep the same NVH performance levels. Exhaust system consist of muffler, bellows, pipes and hangers. For muffler design both acoustic (transmission loss, pass-by noise, tail pipe noise etc.) and non-acoustic (backpressure) parameters needs to be considered. In the current paper, methodology for muffler design optimization using 1D acoustic simulation software is presented. The baseline exhaust design consist of two mufflers; main muffler and post muffler. Simulation methodology is developed to optimize main muffler design in order to eliminate post muffler requirement while achieving the same performance of baseline exhaust design.
X