Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Deployment of OTA-Upgradable Teammate Advanced Drive

2022-03-29
2022-01-0063
Teammate Advanced Drive is a driving support system with state-of-the-art automated driving technology that has been developed for customers’ safe and secure driving on highways based on the Toyota’s Mobility Teammate Concept. This SAE Level 2 (L2) system assists overtaking, lane changes, and branching to the destination, in addition to providing hands-free lane centering and car following. The automated driving technology includes self-localization onto a High Definition Map, multi-modal sensing to cover 360 degrees of the surrounding environment using fusion of LiDARs, cameras, and radars, and a redundant architecture to realize fail-safe operation when a malfunction or system limitation occurs. High-performance computing is provided to implement deep learning for predicting and responding to various situations that may be encountered while driving.
Technical Paper

Development of Automatic Door Lock System to Help Prevent Collisions between Opened Doors and Approaching Vehicles When Exiting Vehicle

2022-03-29
2022-01-0068
Collisions between opened doors and approaching vehicles such as bicycles are common occurrences in urban areas around the world. For example, in Chicago, 20% of all bicycle accidents involve collisions with doors, which occur over 300 times a year. In addition, there are concerns about a further rise in accidents due to the recent increase in home delivery services and bicycle commuting during the COVID-19 pandemic. Some advanced driver assistance systems (ADAS) that are designed to help prevent this type of accident have already been introduced. These systems detect approaching vehicles with sensors and alert the person opening the door via LED lights or a buzzer when the door is opened. The occupant must understand the meaning of the alert and stop opening the door quickly to prevent an accident. However, if the occupant is an elderly person or a child, it is difficult to stop opening the door quickly.
Technical Paper

Road Crossing Assistance Method Using Object Detection Based on Deep Learning

2022-03-29
2022-01-0149
This paper describes a method for assisting pedestrians to cross a road. As motorization develops, pedestrian protection techniques are becoming more and more important. Advanced driving assistance systems (ADAS) are improving rapidly to provide even greater safety. However, since the accident risk of pedestrians remains high, the development of an advanced walking assistance system for pedestrian protection may be an effective means of reducing pedestrian accidents. Crossing a road is one of the highest risk events, and is a complex phenomenon that consists of many dynamically changing elements such as vehicles, traffic signals, bicycles, and the like. A road crossing assistance system requires three items: real-time situational recognition, a robust decision-making function, and reliable information transmission. Edge devices equipped with autonomous systems are one means of achieving these requirements.
Technical Paper

Development of Safety Performance for FC Stack in the New Toyota FCEV

2022-03-29
2022-01-0686
The new Toyota Mirai hydrogen fuel cell electric vehicle (FCEV) was launched in December 2020. Achieving a low-cost, high-performance FC stack is an important objective in FCEV development. At the same time, it is also necessary to ensure vehicle safety. This paper presents an overview of the safety requirements for onboard FC stacks. It also describes the simulation and evaluation methods for the following matters related to the FC stack. i) Impact force resistance: The FC stack was designed to prevent cell layer slippage due to impact. Constraint force between the cell layers is provided by the frictional force between the cells and an external constraint. A simulation of the behavior of the cell layers under impact force was developed. The impact force resistance was confirmed by an impact loading test. ii) Hydrogen safety: The FC stack was designed so that permeated hydrogen is ventilated and the hydrogen concentration is kept below the standard.
Journal Article

Development of Strength Distributed Hot Stamp Parts

2019-04-02
2019-01-0522
1 Structural parts, such as the center pillar, are a multi-layer structure. They are a combination of high-strength panels and high-toughness panels, to control the deformation mode during a crash. If we can make this multi-layered structure as one panel, consisting of different hardness within it, we will be able to make a lightweight part. In this study, we have developed a method to fabricate a ‘lightweight center pillar’ with the following processes. First, the whole panel is hardened by quenching within the hot stamp process. Next, certain areas of the panel are softened by partial tempering. We have found that the temperature zone for softening is between A1 and A3, and it is easy to perform a rapid and accurate tempering by utilizing induction heating around the Curie temperature between A1 and A3 transformation temperature.
Technical Paper

Reference PMHS Sled Tests to Assess Submarining of the Small Female

2018-11-12
2018-22-0003
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining.
Technical Paper

Theory of Collision Avoidance Capability in Automated Driving Technologies

2018-04-03
2018-01-0044
This paper proposes a theory to analyze the collision avoidance capability of automated driving technologies. The theory gives answers to a fundamental question whether automated vehicles fall into extreme conditions at all rather than another question how a vehicle reacts under extreme conditions (is it as safe as driver?). The theory clarifies the following matters: There are two types of hazards to cause collisions, cognitive hazards and behavioral hazards. Cognitive hazards are handled by controlling the upper limit speed of the automated vehicle including when stopped. There are two methods for handling behavioral hazards, preparation and response. The response known well is the coping method activated when the hazard is detected in the dynamic (operational) level. The preparation is the coping method operating at all time in the semantic (tactical) level.
Technical Paper

Update of the WorldSID 50th Male Pelvic Injury Criterion and Risk Curve

2018-04-03
2018-01-0539
Petit et al. 2015 and Lebarbé et al. 2016 reported on two studies where the injury mechanism and threshold of the sacroiliac joint were investigated in two slightly oblique crash test conditions from 18 Post Mortem Human Subjects (PMHS) tests. They concluded that the sacroiliac joint fractures were associated with pubic rami fractures. These latter being reported to occur first in the time history. Therefore it was recommended not to define a criterion specific for the sacroiliac joint. In 2012, injury risk curves were published for the WorldSID dummy by Petitjean et al. For the pelvis, dummy and PMHS paired tests from six configurations were used (n = 55). All of these configurations were pure lateral impacts. In addition, the sacroiliac joint and femur neck loads were not recorded, and the dummy used was the first production version (WorldSID revision 1). Since that time, the WorldSID was updated several times, including changes in the pelvis area.
Technical Paper

Development of New Hybrid Transaxle for Mid - Size Vehicle

2018-04-03
2018-01-0429
The new P710 hybrid transaxle for a mid-size 2.5-liter class vehicle was developed based on the Toyota New Global Architecture (TNGA) design philosophy to achieve a range of desired performance objects. A smaller and lighter transaxle with low mechanical loss was realized by incorporating a new gear train structure and a downsized motor. The noise of the P710 transaxle was also reduced by adopting a new damper structure.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Technical Paper

Feasibility Study of Drowsy Driving Prediction based on Eye Opening Time

2017-03-28
2017-01-1398
Since drowsy driving is a major cause of serious traffic accidents, there is a growing requirement for drowsiness prevention technologies. This study proposes a drowsy driving prediction method based on eye opening time. One issue of using eye opening time is predicting strong drowsiness before the driver actually feels sleepy. Because overlooking potential hazards is one of the causes of traffic accidents and is closely related to driver cognition and drowsiness, this study focuses on eye opening movements during driving. First, this report describes hypotheses concerning drowsiness and eye opening time based on the results of previous studies. It is assumed that the standard deviation of eye opening time (SDEOP) indicates driver drowsiness and the following two transitions are considered: increasing and decreasing SDEOP. To confirm the hypotheses, the relationship between drowsiness and SDEOP was investigated.
Technical Paper

Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral Impacts

2016-11-07
2016-22-0005
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries.
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Journal Article

Pedestrian/Bicyclist Limb Motion Analysis from 110-Car TASI Video Data for Autonomous Emergency Braking Testing Surrogate Development

2016-04-05
2016-01-1456
Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
Technical Paper

Factors in Annoyance Due to Windshield Reflection of the Outline of the Head-up Display

2016-04-05
2016-01-1417
The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
Technical Paper

ST-Lib: A Library for Specifying and Classifying Model Behaviors

2016-04-05
2016-01-0621
Test and verification procedures are a vital aspect of the development process for embedded control systems in the automotive domain. Formal requirements can be used in automated procedures to check whether simulation or experimental results adhere to design specifications and even to perform automatic test and formal verification of design models; however, developing formal requirements typically requires significant investment of time and effort for control software designers. We propose Signal Template Library (ST-Lib), a uniform modeling language to encapsulate a number of useful signal patterns in a formal requirement language with the goal of facilitating requirement formulation for automotive control applications. ST-Lib consists of basic modules known as signal templates. Informally, these specify a characteristic signal shape and provide numerical parameters to tune the shape.
Technical Paper

Development of Bicycle Surrogate for Bicyclist Pre-Collision System Evaluation

2016-04-05
2016-01-1447
As part of active safety systems for reducing bicyclist fatalities and injuries, Bicyclist Pre-Collision System (BPCS), also known as Bicyclist Autonomous Emergency Braking System, is being studied currently by several vehicles manufactures. This paper describes the development of a surrogate bicyclist which includes a surrogate bicycle and a surrogate bicycle rider to support the development and evaluation of BPCS. The surrogate bicycle is designed to represent the visual and radar characteristics of real bicyclists in the United States. The size of bicycle surrogate mimics the 26 inch adult bicycle, which is the most popular adult bicycle sold in the US. The radar cross section (RCS) of the surrogate bicycle is designed based on RCS measurement of the real adult sized bicycles.
Technical Paper

Modeling of Low Illuminance Road Lighting Condition Using Road Temporal Profile

2016-04-05
2016-01-1454
Pedestrian Automatic Emergency Braking (PAEB) for helping avoiding/mitigating pedestrian crashes has been equipped on some passenger vehicles. Since approximately 70% pedestrian crashes occur in dark conditions, one of the important components in the PAEB evaluation is the development of standard testing at night. The test facility should include representative low-illuminance environment to enable the examination of the sensing and control functions of different PAEB systems. The goal of this research is to characterize and model light source distributions and variations in the low-illuminance environment and determine possible ways to reconstruct such an environment for PAEB evaluation. This paper describes a general method to collect light sources and illuminance information by processing large amount of potential collision locations at night from naturalistic driving video data.
X