Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Engine Efficiency Measurements Using a 100 kHz Radio Frequency Corona Igniter

2023-08-28
2023-24-0041
Conventional spark-ignition engines are currently incapable of meeting rising customer performance demands while complying with even stringent pollutant-emissions regulations. As a result, innovative ignition systems are being developed to accomplish these targets. Radio-Frequency corona igniters stand out for their ability to accelerate early flame growth speed by exploiting the combined action of kinetic, thermal and transport effects. Furthermore, a volumetric discharge enables the promotion of combustion over a wide area, as opposed to the local ignition of traditional spark. The present work wants to evaluate the advantages of a Streamer-type Radio Frequency corona discharge at about 100 kHz with respect to those of traditional spark igniter.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Technical Paper

Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug

2021-09-05
2021-24-0020
Nowadays internal combustion engines can operate under lean combustion conditions to maximize efficiency, as long as combustion stability is guaranteed. The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially at high level of excess-air or dilution. The enhancement of the in-cylinder global motion and local turbulence is an effective way to increase the flame velocity. During the ignition process, the excessive charge motion can hinder the spark discharge and eventually cause a misfire. In this perspective, the interaction between the igniter and the flow field is a fundamental aspect which still needs to be explored in more detail to understand how the combustion originates and develops. In this work, a combined experimental and numerical study is carried out to investigate the flow field around the spark gap, and its effect on the spark discharge evolution.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Comparative Analysis between a Barrier Discharge Igniter and a Streamer-Type Radio-Frequency Corona Igniter in an Optically Accessible Engine in Lean Operating Conditions

2020-04-14
2020-01-0276
Among plasma-assisted ignition technologies, the Radio-Frequency (RF) corona family represents an interesting solution for the ability to extend the engine operating range. These systems generate transient, non-thermal plasma, which is able to enhance the combustion onset by means of thermal, kinetic and transport effects. Streamer-type RF corona discharge, at about 1 MHz, ignites the air-fuel mixture in multiple filaments, resulting in many different flame kernels. The main issue of this system is that at high electrode voltage and low combustion chamber pressure a transition between streamer and arc easily occurs: in this case transient plasma benefits are lost. A barrier discharge igniter (BDI), supplied with the same RF energy input, instead, is more breakdown-resistant, so that voltage can be raised to higher levels. In this work, a streamer-type RF corona igniter and a BDI were tested in a single-cylinder optical engine fueled with gasoline.
Technical Paper

Analytical Approach to Characterize the Effect of Engine Control Parameters and Fuel Properties on ACI Operation in a GDI Engine

2020-04-14
2020-01-1141
Advanced compression ignition (ACI) operation in gasoline direct injection (GDI) engines is a promising concept to reduce fuel consumption and emissions at part load conditions. However, combustion phasing control and the limited operating range in ACI mode are a perennial challenge. In this study the combined impact of fuel properties and engine control strategies in ACI operation are investigated. A design of experiments method was implemented using a three level orthogonal array to determine the sensitivity of engine control parameters on the engine load, combustion noise and stability under low load ACI operation for three RON 98 gasoline fuels, each exhibiting disparate chemical composition. Furthermore, the thermodynamic state of the compression histories was studied with the aid of the pressure-temperature framework.
Journal Article

Detailed Analysis of U.S. Department of Energy Engine Targets Compared to Existing Engine Technologies

2020-04-14
2020-01-0835
The U.S. Department of Energy, Vehicle Technologies Office (U.S. DOE-VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that would enable the United States to burn less petroleum on the road. System simulation is an accepted approach for evaluating the fuel economy potential of advanced (future) technology targets. U.S. DOE-VTO defines the targets for advancement in powertrain technologies (e.g., engine efficiency targets, battery energy density, lightweighting, etc.) Vehicle system simulation models based on these targets have been generated in Autonomie, reflecting the different EPA classifications of vehicles for different advanced timeframes as part of the DOE Benefits and Scenario (BaSce) Analysis. It is also important to evaluate the progress of these component technical targets compared to existing technologies available in the market.
Journal Article

Internal Nozzle Flow Simulations of the ECN Spray C Injector under Realistic Operating Conditions

2020-04-14
2020-01-1154
In this study, three-dimensional large eddy simulations were performed to study the internal nozzle flow of the ECN Spray C diesel injector. Realistic nozzle geometry, full needle motion, and internal flow imaging data obtained from X-ray measurements were employed to initialize and validate the CFD model. The influence of injection pressure and fuel properties were investigated, and the effect of mesh size was discussed. The results agreed well with the experimental data of mass flow rate and correctly captured the flow structures inside the orifice. Simulations showed that the pressure drop near the sharp orifice inlet triggered flow separation, resulting in the ingestion of ambient gas into the orifice via a phenomenon known as hydraulic flip. At higher injection pressure, the pressure drop was more significant as the liquid momentum increased and the stream inertia was less prone to change its direction.
Technical Paper

Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend

2019-09-09
2019-24-0128
Ongoing development of a CFD framework for the simulation of primary atomization of a high pressure diesel jet is presented in this work. The numerical model is based on a second order accurate, polyhedral Finite Volume (FV) method implemented in foam-extend-4.1, a community driven fork of the OpenFOAM software. A geometric Volume-of-Fluid (VOF) method isoAdvector is used for interface advection, while the Ghost Fluid Method (GFM) is used to handle the discontinuity of the pressure and the pressure gradient at the interface between the two phases: n-dodecane and air in the combustion chamber. In order to obtain highly resolved interface while minimizing computational time, an Adaptive Grid Refinement (AGR) strategy for arbitrary polyhedral cells is employed in order to refine the parts of the grid near the interface. Dynamic Load Balancing (DLB) is used in order to preserve parallel efficiency during AGR.
Technical Paper

Identification and Characterization of Steady Spray Conditions in Convergent, Single-Hole Diesel Injectors

2019-04-02
2019-01-0281
Reduced-order models typically assume that the flow through the injector orifice is quasi-steady. The current study investigates to what extent this assumption is true and what factors may induce large-scale variations. Experimental data were collected from a single-hole metal injector with a smoothly converging hole and from a transparent facsimile. Gas, likely indicating cavitation, was observed in the nozzles. Surface roughness was a potential cause for the cavitation. Computations were employed using two engineering-level Computational Fluid Dynamics (CFD) codes that considered the possibility of cavitation. Neither computational model included these small surface features, and so did not predict internal cavitation. At steady state, it was found that initial conditions were of little consequence, even if they included bubbles within the sac. They however did modify the initial rate of injection by a few microseconds.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Multi-dimensional Modeling of Non-equilibrium Plasma for Automotive Applications

2018-04-03
2018-01-0198
While spark-ignition (SI) engine technology is aggressively moving towards challenging (dilute and boosted) combustion regimes, advanced ignition technologies generating non-equilibrium types of plasma are being considered by the automotive industry as a potential replacement for the conventional spark-plug technology. However, there are currently no models that can describe the low-temperature plasma (LTP) ignition process in computational fluid dynamics (CFD) codes that are typically used in the multi-dimensional engine modeling community. A key question for the engine modelers that are trying to describe the non-equilibrium ignition physics concerns the plasma characteristics. A key challenge is also represented by the plasma formation timescale (nanoseconds) that can hardly be resolved within a full engine cycle simulation.
Technical Paper

Modeling the Dynamic Coupling of Internal Nozzle Flow and Spray Formation for Gasoline Direct Injection Applications

2018-04-03
2018-01-0314
A numerical study has been carried out to assess the effects of needle movement and internal nozzle flow on spray formation for a multi-hole Gasoline Direct Injection system. The coupling of nozzle flow and spray formation is dynamic in nature and simulations with pragmatic choice of spatial and temporal resolutions are needed to analyze the sprays in a GDI system. The dynamic coupling of nozzle flow and spray formation will be performed using an Eulerian-Lagrangian Spray Atomization (ELSA) approach. In this approach, the liquid fuel will remain in the Eulerian framework while exiting the nozzle, while, depending on local instantaneous liquid concentration in a given cell and amount of liquid in the neighboring cells, part of the liquid mass will be transferred to the Lagrangian framework in the form of Lagrangian parcels.
Technical Paper

Experimental Analysis of Fuel and Injector Body Temperature Effect on the Hydraulic Behavior of Latest Generation Common Rail Injection Systems

2018-04-03
2018-01-0282
The present paper describes the effect of thermal conditions on the hydraulic behavior of Diesel common rail injectors, with a particular focus on low temperatures for fuel and injector body. The actual injection system thermal state can significantly influence both the injected quantity and the injection shape, requiring proper amendments to the base engine calibration in order to preserve the combustion efficiency and pollutant emissions levels. In particular, the introduction of the RDE (Real Driving Emission) test cycle widens the effective ambient temperature range for the homologation cycle, this way stressing the importance of the thermal effects analysis. An experimental test bench was developed in order to characterize the injector in an engine-like configuration, i.e. fuel pump, piping, common rail, pressure control system and injectors.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
X