Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Correlation between Sensor Performance, Autonomy Performance and Fuel-Efficiency in Semi-Truck Platoons

2021-04-06
2021-01-0064
Semi-trucks, specifically class-8 trucks, have recently become a platform of interest for autonomy systems. Platooning involves multiple trucks following each other in close proximity, with only the lead truck being manually driven and the rest being controlled autonomously. This approach to semi-truck autonomy is easily integrated on existing platforms, reduces delivery times, and reduces greenhouse gas emissions via fuel economy benefits. Level 1 SAE fuel studies were performed on class-8 trucks operating with the Auburn Cooperative Adaptive Cruise Control (CACC) system, and fuel savings up to 10-12% were seen. Enabling platooning autonomy required the use of radar, global positioning systems (GPS), and wireless vehicle-to-vehicle (V2V) communication. Poor measurements and state estimates can lead to incorrect or missing positioning data, which can lead to unnecessary dynamics and finally wasted fuel.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
Technical Paper

Analysis and Optimization of Seat and Suspension Parameters for Occupant Ride Comfort in a Passenger Vehicle

2018-04-03
2018-01-1404
This study presents a methodology for comparative analysis of seat and suspension parameters on a system level to achieve minimum occupant head displacement and acceleration, thereby improving occupant ride comfort. A lumped-parameter full-vehicle ride model with seat structures, seat cushions and five occupants has been used. Two different vehicle masses are considered. A low amplitude pulse signal is provided as the road disturbance input. The peak vertical displacement and acceleration of the occupant’s head due to the road disturbance are determined and used as measures of ride comfort. Using a design of experiments approach, the most critical seat cushion, seat structure and suspension parameters and their interactions affecting the occupant head displacement and acceleration are determined. An optimum combination of parameters to achieve minimum peak vertical displacement and acceleration of the occupant’s head is identified using a response surface methodology.
Technical Paper

Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles

2017-03-28
2017-01-1660
Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection.
Journal Article

Active Thermal Management with a Dual Mode Coolant Pump

2013-04-08
2013-01-0849
A GT-suite commercial code was used to develop a fully integrated model of a light duty commercial vehicle with a V6 diesel engine, to study the use of a BorgWarner dual mode coolant pump (DMCP) in active thermal management of the vehicle. An Urban Dynamometer Driving Schedule (UDDS) was used to validate the simulation results with the experimental data. The conventional mechanical pump from the validated model was then replaced with the dual mode coolant pump. The control algorithm for the pump was based on controlling the coolant temperature with pump speed. Maximum electrical speed of the pump and the efficiency of the pump were used to determine whether the pump should run in mechanical or electrical mode. The model with the dual mode coolant pump was simulated for the UDDS cycle to demonstrate the effectiveness of control strategy.
Technical Paper

Seat Comfort as a Function of Occupant Characteristics and Pressure Measurements at the Occupant-Seat Interface

2012-04-16
2012-01-0071
Seat comfort is a highly subjective attribute and depends on a wide range of factors, but the successful prediction of seat comfort from a group of relevant variables can hold the promise of eliminating the need for time-consuming subjective evaluations during the early stages of seat cushion selection and development. This research presents the subjective seat comfort data of a group of 30 participants using a controlled range of seat foam samples, and attempts to correlate this attribute with a) the anthropometric and demographic characteristics of the participants, b) the objective pressure distribution at the body-seat interface and c) properties of the various foam samples that were used for the test.
Journal Article

Determining Perceptual Characteristics of Automotive Interior Materials

2009-04-20
2009-01-0017
This paper presents results of a three-phase research project aimed at understanding how future automotive interior materials should be selected or designed to satisfy the needs of the customers. The first project phase involved development of 22 five-point semantic differential scales to measure visual, visual-tactile, and evaluative characteristics of the materials. Some examples of the adjective pairs used to create the semantic differential scales to measure the perceptual characteristics of the material are: a) Visual: Light vs. Dark, Flat vs. Shiny, etc., b) Visual-Tactile: Smooth vs. Rough, Slippery vs. Sticky, Compressive vs. Non-Compressive, Textured vs. Non-Textured, etc., c) Evaluative (overall perception): Dislike vs. Like, Fake vs. Genuine, Cheap vs. Expensive, etc. In the second phase, 12 younger and 12 older drivers were asked to evaluate a number of different automotive interior materials by using the 22 semantic differential scales.
Technical Paper

Sybil Attacks on Vehicular Ad-Hoc Networks

2008-04-14
2008-01-0770
Security is a huge concern in VANETs (Vehicular Ad hoc NETworks) since the information being conveyed may affect life-or-death decisions. One of the security concerns is the Sybil Attack. This attack attempts to create multiple identities to disrupt or control the network. A malicious node utilizing the Sybil Attack in VANETs can disrupt the network in various ways. It can create a large number of Sybil nodes to intervene in message forwarding, potentially causing a massive pileup and great loss of life. A malicious node can also use the Sybil Attack to create illusions of traffic congestions, getting other drivers to take alternate routes and leaving a clear path for the malicious node to its destination. In this paper, we discuss several defense strategies for the Sybil Attack in VANETs.
Journal Article

Predicting Effects of Veiling Glare Caused by Instrument Panel Reflections in the Windshields

2008-04-14
2008-01-0666
This paper presents quantitative effects of windshield veiling glare on the visibility of targets based on a two part research project. The first part involved measurement and modeling of luminance of veiling glare caused by the reflection of different instrument panel materials under range of conditions defined by combination of windshield angle, instrument panel angle, and sun angle. In the second part, the veiling glare model was incorporated in a visibility prediction model based on visual contrast threshold data. A critical visibility condition of a driver approaching a tunnel with the sunlight falling on his windshield and attempting to detect a target inside the tunnel was studied by conducting sensitivity analyses. The sensitivity analysis showed that a 2 ft diameter 10% reflectance target illuminated by 5000 lux of lighting inside a tunnel visibility distances can be seen from 0 to 3,000 feet depending upon driver's age, vehicle design parameters and sun illumination levels.
Technical Paper

Commonality and Differences between Cruiser, Sport, and Touring Motorcycles: An Ergonomics Study

2007-04-16
2007-01-0438
This paper presents results of two surveys, namely, a photographic measurements survey and a rider survey, conducted to determine how the type and origin of a motorcycle related to motorcycle dimensions, rider characteristics, seating posture, and motorcycle controls and displays. In the photographic survey, 12 most popular motorcycles covering three types (cruiser, sport, and touring) and three origins (Europe, Asia and North America) were measured from photographs taken in a standardized procedure with and without a rider. The data showed that the Asian and North American cruisers were very similar in all dimensions. These include seat height, seat to handlebar location, seat to foot rest location, foot rest size, and handgrip stance. This resulted in similar rider posture. North American sport motorcycles were more like cruisers than the Asian and European sport motorcycles.
Technical Paper

Touch Feel and Appearance Characteristics of Automotive Door Armrest Materials

2007-04-16
2007-01-1217
This paper presents results of a five phase study conducted to evaluate touch feel and appearance of door armrest materials. Seven different production door armrests with different material characteristics such as softness, smoothness, compressibility, texture, etc. were evaluated. In the first phase, the subjects seated in a vehicle buck in their preferred seating position with the armrests adjusted at their preferred heights, provided ratings on a number of touch feel and appearance of the door armrest materials using 5-point semantic differential scales. In the second phase, the armrests were presented to each subject in all possible pairs and they were asked to select preferred armrest material in each pair.
Technical Paper

Incorporating Hard Disks in Vehicles- Usages and Challenges

2006-04-03
2006-01-0814
With recent advances in microprocessors and data storage technologies, vehicle users can now bring or access large amounts of data in vehicles for purposes such as communication (e.g. e-mail, phone books), entertainment (e.g. music and video files), browsing and searching for information (e.g. on-board computers and internet). The challenge for the vehicle designer is how to design data displays and retrieval methods to allow data search and manipulation tasks by managing driver workload at safe acceptable levels. This paper presents a data retrieval menu system developed to assess levels of screens (depth of menu) that may be needed to select required information when a vehicle is equipped with the capability to access audio files, cell phone, PDA, e-mail and “On-star” type functions.
Technical Paper

Investigation of Active Steering/Wheel Torque Control at the Rollover Limit Maneuver

2004-05-04
2004-01-2097
It is well understood that driver's steering input strongly affects lateral vehicle dynamics and excessive steering command may result in unstable vehicle motion. In a certain driving condition, it is possible for a skilled driver to prevent vehicle rollover with better perceptive capability of judging conditions and responding faster with smooth compensatory actions. This paper investigates the possibility of using active steering and wheel torque control to assist drivers in avoiding vehicle rollovers in emergency situations. The effectiveness of steering control alone and combination of steering/wheel torque control in recovery from unstable vehicle roll condition was demonstrated through simulation of both low and high vehicle speeds.
Technical Paper

Interior Design Process for UM-D's Low Mass Vehicle

2004-03-08
2004-01-1709
This paper describes a unique interior design and multidisciplinary process implemented by the faculty and students to develop the interior for a Low Mass Vehicle (LMV). The 103 inch LMV was designed with the goal of about 30% reduction in weight than a typical class C segment vehicle and would require low investment in manufacturing. In the early stages of the program, the UM-Dearborn team developed detailed requirements of the vehicle interior based on the vehicle's exterior developed using a similar process. The requirements were given to a senior class of automotive design students from the College of Creative Studies in Detroit to create different interior design themes. Approximately twenty-five interior design themes were judged by a panel of automotive industry experts, and a winning design was selected.
Technical Paper

Cost-Benefit Analysis of Thermoplastic Matrix Composites for Structural Automotive Applications

2002-06-03
2002-01-1891
This paper presents cost-benefit analysis of glass and carbon fiber reinforced thermoplastic matrix composites for structural automotive applications based on press forming operation. Press forming is very similar to stamping operation for steel. The structural automotive applications involve beam type components. The part selected for a case study analysis is a crossbeam support for instrument panels.
Technical Paper

A Real-Time Computer System for the Control of Refrigerant Flow

1997-02-24
970108
This paper presents a real-time computer system for the control of refrigerant flow in an automotive air conditioning system. This is an experimental system used to investigate the potential advantages of electronic flow control over conventional flow control (using an orifice tube or thermal expansion valve). Two features of this system are presented. First, the system organization is described. Second, the control and interface software are presented. The emphasis is on the software. The system is organized as a closed loop control system. The inputs to the controller are measurements of the refrigerant system. In particular, thermocouples are used to measure the refrigerant temperature before and after the evaporator. The analog thermocouple signals are converted to digital form by an off-the-shelf, portable, data acquisition system (DAQ). Via a parallel port link, these digital measurements are transfered to a laptop computer.
X