Refine Your Search

Topic

Search Results

Technical Paper

Energy-Efficient and Context-Aware Computing in Software-Defined Vehicles for Advanced Driver Assistance Systems (ADAS)

2024-04-09
2024-01-2051
The rise of Software-Defined Vehicles (SDV) has rapidly advanced the development of Advanced Driver Assistance Systems (ADAS), Autonomous Vehicle (AV), and Battery Electric Vehicle (BEV) technology. While AVs need power to compute data from perception to controls, BEVs need the efficiency to optimize their electric driving range and stand out compared to traditional Internal Combustion Engine (ICE) vehicles. AVs possess certain shortcomings in the current world, but SAE Level 2+ (L2+) Automated Vehicles are the focus of all major Original Equipment Manufacturers (OEMs). The most common form of an SDV today is the amalgamation of AV and BEV technology on the same platform which is prominently available in most OEM’s lineups. As the compute and sensing architectures for L2+ automated vehicles lean towards a computationally expensive centralized design, it may hamper the most important purchasing factor of a BEV, the electric driving range.
Technical Paper

Energy Modeling of Deceleration Strategies for Electric Vehicles

2023-04-11
2023-01-0347
Rapid adoption of battery electric vehicles means improving the energy consumption and energy efficiency of these new vehicles is a top priority. One method of accomplishing this is regenerative braking, which converts kinetic energy to electrical energy stored in the battery pack while the vehicle is decelerating. Coasting is an alternative strategy that minimizes energy consumption by decelerating the vehicle using only road load. A battery electric vehicle model is refined to assess regenerative braking, coasting, and other deceleration strategies. A road load model based on public test data calculates tractive effort requirements based on speed and acceleration. Bidirectional Willans lines are the basis of a powertrain model simulating battery energy consumption. Vehicle tractive and powertrain power are modeled backward from prescribed linear velocity curves, and the coasting trajectory is forward modeled given zero tractive power.
Journal Article

Willans Line Bidirectional Power Flow Model for Energy Consumption of Electric Vehicles

2022-03-29
2022-01-0531
A new and unique electric vehicle powertrain model based on bidirectional power flow for propel and regenerative brake power capture is developed and applied to production battery electric vehicles. The model is based on a Willans line model to relate power input from the battery and power output to tractive effort, with one set of parameters (marginal efficiency and an offset loss) for the bidirectional power flow through the powertrain. An electric accessory load is included for the propel, brake and idle phases of vehicle operation. In addition, regenerative brake energy capture is limited with a regen fraction (where the balance goes to friction braking), a power limit, and a low-speed cutoff limit. The purpose of the model is to predict energy consumption and range using only tractive effort based on EPA published road load and test mass (test car list data) and vehicle powertrain parameters derived from EPA reported unadjusted UDDS and HWFET energy consumption.
Technical Paper

Estimating the Real-World Benefits of Lane Departure Warning and Lane Keeping Assist

2022-03-29
2022-01-0816
Four crash modes are overrepresented in traffic fatalities: run-off-road crashes, non-tracking run-off-road crashes, head-on crashes, and pedestrian crashes. Two advanced driver assist systems developed to help prevent tracking run-off-road crashes and head-on crashes are lane departure warning (LDW) and lane keeping assist (LKA). LDW acts to warn the driver when they are encroaching the lane boundary, whereas LKA performs automatic steering to prevent the vehicle from departing the lane. The objective of this research was to use real-world crash data to estimate current LDW and LKA system effectiveness in reducing run-off-road crashes and cross-centerline head-on crashes. All passenger vehicles that experienced a lane departure from 2017 to 2019 in the Crash Investigation Sampling System (CISS) were analyzed.
Technical Paper

Intelligent Auxiliary Battery Control - A Connected Approach

2021-09-21
2021-01-1248
As vehicles are getting electrified and more intelligent, the energy consumption of the auxiliary system increases rapidly. The auxiliary battery acts as the backbone of the system to support the proper operation of the vehicle. It is important to ensure the auxiliary battery has enough energy to meet the basic loads regardless the vehicle is in park or running. However, the existing methods only focus on auxiliary energy management when the vehicle is in a dynamic event. To fulfill the gap, we propose an intelligent strategy that detects the low state of charge (SOC) condition, temporarily turns down the auxiliary loads based on their priorities and charges the auxiliary battery at the maximum efficiency of the auxiliary power unit. In addition, the proposed strategy allows the vehicle to get the park duration update and make intelligent decisions on charging the auxiliary battery.
Technical Paper

Aging Simulation of Electric Vehicle Battery Cell Using Experimental Data

2021-04-06
2021-01-0763
The adoption of lithium-ion batteries in vehicle electrification is fast growing due to high power and energy demand on hybrid and electric vehicles. However, the battery overall performance changes with time through the vehicle life. This paper investigates the electric vehicle battery cell aging under different usages. Battery cell experimental data including open circuit voltage and internal resistance is utilized to build a typical electric vehicle model in the AVL-Cruise platform. Four driving cycles (WLTP, UDDS, HWFET, and US06) with different ambient temperatures are simulated to acquire the battery cell terminal currents. These battery cell terminal current data are inputs to the MATLAB/Simulink battery aging model. Simulation results show that battery degrades quickly in high ambient temperatures. After 15,000 hours usage in 50 degrees Celsius ambient temperature, the usable cell capacity is reduced up to 25%.
Technical Paper

Lithium-Ion Battery Cell Modeling with Experiments for Battery Pack Design

2020-04-14
2020-01-1185
Lithium-ion polymer battery has been widely used for vehicle onboard electric energy storage ranging from 12V SLI (Starting, Lighting, and Ignition), 48V mild hybrid electric, to 300V battery electric vehicle. Formulation on cell parameters acquired from minimum numbers of experiments, the modeling and simulation could be an effective approach in predicting battery performance, thermal effectiveness, and degradation. This paper describes the modeling, simulation, and validation of Lithium-Nickel-Manganese-Cobalt-Oxide (LiNiMnCoO2) based cell with 3.6V nominal voltage and 20Ah capacity. Constant current 20A, 40A, 60A, and 80A discharge tests are conducted in the computer-controlled cycler and temperature chamber. Discharging voltage curves and cell surface temperature distributions are recorded in each discharging test. A three-dimensional cell model is constructed in the COMSOL multi-physics platform based on the cell parameters.
Technical Paper

Step by Step Conversion of ICE Motorcycle to a BEV Configuration

2020-04-14
2020-01-1436
With the mass movement toward electrification and renewable technologies, the scope of innovation of electrification has gone beyond the automotive industry into areas such as electric motorcycle applications. This paper provides a discussion of the methodology and complexities of converting an internal combustion motorcycle to an electric motorcycle. In developing this methodology, performance goals including, speed limits, range, weight, charge times, as well as riding styles will be examined and discussed. Based on the goals of this paper, parts capable of reaching the performance targets are selected accordingly. Documentation of the build process will be presented along with the constraints, pitfalls, and difficulties associated with the process of the project. The step-by-step process that is developed can be used as a guideline for future build and should be used as necessary.
Technical Paper

Experimental Evaluation of Longitudinal Control for Automated Vehicles through Vehicle-in-the-Loop Testing

2020-04-14
2020-01-0714
Automated driving functionalities delivered through Advanced Driver Assistance System (ADAS) have been adopted more and more frequently in consumer vehicles. The development and implementation of such functionalities pose new challenges in safety and functional testing and the associated validations, due primarily to their high demands on facility and infrastructure. This paper presents a rather unique Vehicle-in-the-Loop (VIL) test setup and methodology compared those previously reported, by combining the advantages of the hardware-in-the-loop (HIL) and traditional chassis dynamometer test cell in place of on-road testing, with a multi-agent real-time simulator for the rest of test environment.
Journal Article

Long-Term Evolution of Straight Crossing Path Crash Occurrence in the U.S. Fleet: The Potential of Intersection Active Safety Systems

2019-04-02
2019-01-1023
Intersection collisions currently account for approximately one-fifth of all crashes and one-sixth of all fatal crashes in the United States. One promising method of mitigating these crashes and fatalities is to develop and install Intersection Advanced Driver Assistance Systems (I-ADAS) on vehicles. When an intersection crash is imminent, the I-ADAS system can either warn the driver or apply automated braking. The potential safety benefit of I-ADAS has been previously examined based on real-world cases drawn from the National Motor Vehicle Crash Causation Survey (NMVCCS). However, these studies made the idealized assumption of full installation in all vehicles of a future fleet. The objective of this work was to predict the reduction in Straight Crossing Path (SCP) crashes due to I-ADAS systems in the United States over time. The proportion of new vehicles with I-ADAS was modeled using Highway Loss Data Institute (HLDI) fleet penetration predictions.
Technical Paper

Modeling and Validation of Lithium-Ion Polymer SLI Battery

2019-04-02
2019-01-0594
Lead-acid batteries have dominated the automotive conventional electric system, particularly in the functions of starting (S), lighting (L) and ignition (I) for decades. However, the low energy-to-weight ratio and the low energy-to-volume ratio makes the lead-acid SLI battery relatively heavy, large, and shallow Depth of Discharge (DOD). This could be improved by replacing the lead-acid battery by the lithium-ion polymer battery. The lithium-ion polymer battery can provide the same power with lightweight, compact volume, and deep DOD for engine idle elimination using start-stop function that is a basic feature in electric-drive vehicles. This paper presents the modeling and validation of a lithium-ion battery for SLI application. A lithium-metal-oxide based cell with 3.6 nominal voltage and 20Ah capacity is used in the study. A simulation model of lithium-ion polymer battery pack (14.4V, 80Ah) with battery management system is built in the MATLAB/Simulink environment.
Technical Paper

Simulation of Advanced Regenerative Braking Strategies in a Series Plug-in Hybrid Electric Vehicle

2017-10-08
2017-01-2466
Regenerative braking is an important factor in improving hybrid electric vehicle efficiency. This paper proposes a new regenerative braking strategy that activates preemptively during a distracted driving scenario, before service brakes are utilized. The strategy uses onboard advanced driver assistance systems, such as forward facing radar, to detect when an object is approaching fast enough to enable regenerative braking in response. The proposed strategy is simulated on a full-vehicle model of a series plug-in hybrid electric vehicle. A driver model is developed to mimic the behavior of a distracted driver through delayed response time to the changing speed of a lead vehicle. Multiple trials are simulated using different combinations of existing regenerative braking strategies along with the proposed strategy. Results show that a preventative regenerative braking control strategy can recuperate significant amounts of energy while also improving vehicle safety.
Technical Paper

Control Strategy Development for Parallel Plug-In Hybrid Electric Vehicle Using Fuzzy Control Logic

2016-10-17
2016-01-2222
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently developing a control strategy for a parallel plug-in hybrid electric vehicle (PHEV). The hybrid powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. Fuzzy rule sets determine the torque split between the motor and the engine using the accelerator pedal position, vehicle speed and state of charge (SOC) as the input variables. The torque producing components are a 280 kW V8 L83 engine with active fuel management (AFM) and a post-transmission (P3) 100 kW custom motor. The vehicle operates in charge depleting (CD) and charge sustaining (CS) modes. In CD mode, the model drives as an electric vehicle (EV) and depletes the battery pack till a lower state of charge threshold is reached. Then CS operation begins, and driver demand is supplied by the engine operating in V8 or AFM modes with supplemental or loading torque from the P3 motor.
Technical Paper

Conceptual Design and Weight Optimization of Aircraft Power Systems with High-Peak Pulsed Power Loads

2016-09-20
2016-01-1986
The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged. Thus, in order to maintain the weight advantage of MEA and to keep the normal functionality of the aircraft power system in the presence of a high-peak pulsed power load, this paper proposes a novel multidisciplinary weight optimization technique.
Technical Paper

Numerical Investigation of Active and Passive Cooling Systems of a Lithium-Ion Battery Module for Electric Vehicles

2016-04-05
2016-01-0655
In this work, a pseudo three-dimensional coupled thermal-electrochemical model is established to estimate the heat generation and temperature profiles of a lithium ion battery as functions of the state of the discharge. Then, this model is used to investigate the effectiveness of active and passive thermal management systems. The active cooling system utilizes cooling plate and water as the working fluid while the passive cooling system incorporates a phase change material (PCM). The thermal effects of coolant flow rate examined using a computational fluid dynamics model. In the passive cooling system, Paraffin wax used as a heat dissipation source to control battery temperature rise. The effect of module size and battery spacing is studied to find the optimal weight of PCM required. The results show that although the active cooling system has the capability to reduce the peak temperatures, it leads to a large temperature difference over the battery module.
Journal Article

Target Population for Intersection Advanced Driver Assistance Systems in the U.S.

2015-04-14
2015-01-1408
Intersection crashes are a frequent and dangerous crash mode in the U.S. Emerging Intersection Advanced Driver Assistance Systems (I-ADAS) aim to assist the driver to mitigate the consequences of vehicle-to-vehicle crashes at intersections. In support of the design and evaluation of such intersection assistance systems, characterization of the road, environment, and drivers associated with intersection crashes is necessary. The objective of this study was to characterize intersection crashes using nationally representative crash databases that contained all severity, serious injury, and fatal crashes. This study utilized four national crash databases: the National Automotive Sampling System, General Estimates System (NASS/GES); the NASS Crashworthiness Data System (CDS); and the Fatality Analysis Reporting System (EARS) and the National Motor Vehicle Crash Causation Survey (NMVCCS).
Technical Paper

Plug-in Hybrid Electric Vehicle Reengineering of a Conventional Sedan for EcoCAR2

2015-04-14
2015-01-1235
The Wayne State University student team reengineered a mid-sized sedan into a functional plug-in hybrid electric vehicle as participants in the EcoCAR 2 competition sponsored by the US Department of Energy and managed by Argonne National Laboratory. The competition goals included reducing petroleum usage, emissions, and energy consumption through implementing advanced vehicle technologies. During the competition, the team did plug-in charging of the 19 kWh high voltage traction battery, drove in pure electric mode (engine off) until the battery was depleted, then switched to hybrid mode and continued driving by using E85 from the fuel tank. The pure electric mode vehicle driving range was 48 km [30 miles] while pulling an emissions instrumented test trailer and projected to be 58 km [36 miles] without the test trailer load for the competition's city/highway blend drive cycle.
Technical Paper

Design and Simulation of Lithium-Ion Battery Thermal Management System for Mild Hybrid Vehicle Application

2015-04-14
2015-01-1230
It is well known that thermal management is a key factor in design and performance analysis of Lithium-ion (Li-ion) battery, which is widely adopted for hybrid and electric vehicles. In this paper, an air cooled battery thermal management system design has been proposed and analyzed for mild hybrid vehicle application. Computational Fluid Dynamics (CFD) analysis was performed using CD-adapco's STAR-CCM+ solver and Battery Simulation Module (BMS) application to predict the temperature distribution within a module comprised of twelve 40Ah Superior Lithium Polymer Battery (SLPB) cells connected in series. The cells are cooled by air through aluminum cooling plate sandwiched in-between every pair of cells. The cooling plate has extended the cooling surface area exposed to cooling air flow. Cell level electrical and thermal simulation results were validated against experimental measurements.
Technical Paper

Development & Integration of a Charge Sustaining Control Strategy for a Series-Parallel Plug-In Hybrid Electric Vehicle

2014-10-13
2014-01-2905
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle.
Journal Article

Experimental Assessments of Parallel Hybrid Medium-Duty Truck

2014-05-20
2014-01-9021
Fuel consumption reduction on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The Crankshaft-Integrated-Starter-Generator (C-ISG) is one of the parallel hybrid propulsions to improve the fuel economy. The C-ISG configuration is attractive because one electric machine can be used to propel the vehicle, to start the engine, and to be function as a generator. The C-ISG has been implemented in one M1083A1 5-ton tactical cargo truck. This paper presents the experimental assessments of the C-ISG hybrid truck characteristics. The experimental assessments include all electric range for on- and off-road mission cycles and fuel consumption for the high voltage battery charging. Stationary tests related to the charging profile of the battery pack and the silent watch time duration is also conducted.
X