Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

Hybrid Cooling System for Thermal Management in Electric Aerial Vehicles

2024-06-01
2024-26-0468
Continuous improvements and innovations towards sustainability in the aviation industry has brought interest in electrified aviation. Electric aircrafts have short missions in which the temporal variability of thermal loads are high. Lithium-ion (Li-ion) batteries have emerged as prominent power source candidate for electric aircrafts and Urban Air Mobility (UAM). UAMs and Electric aircrafts have large battery packs with battery capacity ranging in hundreds or thousands of kWh. If the battery is exposed to temperatures outside the optimum range, the life and the performance of the battery reduces drastically. Hence, it is crucial to have a Thermal Management System (TMS) which would reduce the heat load on battery in addition to cabin, and machinery thermal loads. Thermal management can be done through active or passive cooling. Adding a passive cooling system like Phase Change Material (PCM) to the TMS reduces the design maximum thermal loads.
Technical Paper

Charging Load Estimation for a Fleet of Autonomous Vehicles

2024-04-09
2024-01-2025
In intelligent surveillance and reconnaissance (ISR) missions, multiple autonomous vehicles, such as unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs), coordinate with each other for efficient information gathering. These vehicles are usually battery-powered and require periodic charging when deployed for continuous monitoring that spans multiple hours or days. In this paper, we consider a mobile host charging vehicle that carries distributed sources, such as a generator, solar PV and battery, and is deployed in the area where the UAVs and UGVs operate. However, due to uncertainties, the state of charge of UAV and UGV batteries, their arrival time at the charging location and the charging duration cannot be predicted accurately.
Technical Paper

Digital Twin Based Multi-Vehicle Cooperative Warning System on Mountain Roads

2024-04-09
2024-01-1999
Compared with urban areas, the road surface in mountainous areas generally has a larger slope, larger curvature and narrower width, and the vehicle may roll over and other dangers on such a road. In the case of limited driver information, if the two cars on the mountain road approach fast, it is very likely to occur road blockage or even collision. Multi-vehicle cooperative control technology can integrate the driving data of nearby vehicles, expand the perception range of vehicles, assist driving through multi-objective optimization algorithm, and improve the driving safety and traffic system reliability. Most existing studies on cooperative control of multiple vehicles is mainly focused on urban areas with stable environment, while ignoring complex conditions in mountainous areas and the influence of driver status. In this study, a digital twin based multi-vehicle cooperative warning system was proposed to improve the safety of multiple vehicles on mountain roads.
Technical Paper

Efficient Electric School Bus Operations: Simulation-Based Auxiliary Load Analysis

2024-04-09
2024-01-2404
The study emphasizes transitioning school buses from diesel to electric to mitigate their environmental impact, addressing challenges like limited driving range through predictive models. This research introduces a comprehensive control-oriented model for estimating auxiliary loads in electric school buses. It begins by developing a transient thermal model capturing cabin behavior, divided into passenger and driver zones. Integrated with a control-oriented HVAC model, it estimates heating and cooling loads for desired cabin temperatures under various conditions. Real-world operational data from school bus specifications enhance the model’s practicality. The models are calibrated using experimental cabin-HVAC data, resulting in a remarkable overall Root Mean Square Error (RMSE) of 2.35°C and 1.88°C between experimental and simulated cabin temperatures.
Technical Paper

Design and Sizing Methodology of Electric Vehicle Powertrain to Achieve Optimal Range and Performance

2024-04-09
2024-01-2160
Battery electric vehicles are quickly gaining momentum to improve vehicle fuel efficiency and emission reduction. However, they must be designed to provide adequate range on a single charge combined with good acceleration performance, top speed, gradeability, and fast charging times. The paper presents a model for sizing the power train of an electric vehicle, including the power electronic converter, electric motor, and battery pack. A major assumption is that an optimal wheel slip rate can be achieved by modern vehicles using slip control systems. MATLAB/Simulink was used to model the vehicle powertrain. Simulations were conducted based on different speed and acceleration profiles. The purpose of the study focused on the motor and power electronics sizing requirements to achieve optimal range and performance.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

An Adapted ARP-Based Approach for the System Safety Assessment of Electric-Propulsion Thermal Runaway Hazards

2024-03-05
2024-01-1919
The global electric and hybrid aircraft market utilizing lithium-ion Energy Storage Systems (ESS) as a means of propulsion, is experiencing a period of extraordinary growth. We are witnessing the development of some of the most cutting-edge technology, and with that, some of the most complex challenges that we as an industry have ever faced. The primary challenge, and the most critical cause of concern, is a phenomenon known as a “Thermal Runaway”, in which the lithium-ion cell enters an uncontrollable, self-heating state, that if not contained, can propagate into a catastrophic fire in the aircraft. A Thermal Runaway (TR) can be caused by internal defects, damage, and/or abuse caused by an exceedance of its operational specifications, and it is a chemical reaction that cannot be stopped once the cell has reached its trigger temperature.
Technical Paper

A Methodology of Optimizing Steering Geometry for Minimizing Steering Errors

2024-01-16
2024-26-0062
The focus on driver and occupant safety as well as comfort is increasing rapidly while designing commercial vehicles in India. Improvements in the road network have enhanced road transport for commercial vehicles. Apart from the cost of operation and fuel economy, the commercial vehicles must deliver goods within stipulated time. These factors resulted in higher speed of operation for commercial vehicles. The design should not compromise the safety of the vehicle at these higher speeds of operation. The vehicle should obey the driver’s intended direction at all speeds and the response of the vehicle to driver input must be predictable without much larger surprises which can lead to accidents. The commercial vehicles are designed with rigid axle and RCB type steering system. This suspension and steering design combination introduce steering errors when vehicle travel over bump, braked and while cornering.
Technical Paper

Zero Carbon Emission Aviation Fuel Technology Review - The Hydrogen Pathway

2024-01-08
2023-36-0029
The commercial aviation currently accounts for roughly 2.5 % of the global CO2 emissions and around 3.5% of world warming emissions, taking into account non CO2 effects on the climate. Its has grown faster in recent decades than the other transport modes (road, rail or shipping), with an average rate of 2.3%/year from 1990 to 2019, prior to the pandemic. Moreover, its share of Greenhouse (GHG) emissions is supposed to grow, with the increasing demand scenario of air trips worldwide. This scenario might threaten the decarbonization targets assumed by the aviation industry, in line with the world efforts to minimize the climate effects caused by the carbon emissions. In this context, hydrogen is set as a promising alternative to the traditional jet fuel, due to its zero carbon emissions.
Technical Paper

A Prophase Simulation Study of Fuel Cell-Battery Hybrid System for eVTOL Aircraft in Steady-State Operation

2023-12-31
2023-01-7092
Electric vertical take-off and landing (eVTOL) is defined as vertical lift aircraft propelled by electric power and capable of carrying people. Based on the system of battery powered CY300 eVTOL, a fuel cell-battery hybrid system (FBHS) in steady-state operation as a potential propulsion system for CY300 eVTOL is proposed. In order to analyze the feasibility of FBHS-powered eVTOL system, a mathematical model is established to evaluate the proposed system performance considering various irreversible effects. Furthermore, considerable sensitivity analyses indicate that the payload of the proposed system is considerably benefited by a higher specific energy of the battery system, specific power of the fuel cell system and hydrogen storage ratio of the hydrogen tank. Hydrogen tank weight decreases the payload while enhances the hovering time.
Technical Paper

High-Precision Modeling and Online Validation of a 200kW-Class Series Hybrid Power System in Aviation

2023-12-31
2023-01-7097
Taking into account the high rotor speed of the generator and the trend of high voltage in direct current microgrids in high-power aviation hybrid propulsion systems, a hybrid power system with a power of 200 kilowatts (kW), a voltage of 540 volts (V), and a rated generator speed of 10500 r/min was established. Anticipating the demands of future high-power system tests, a matching simulation model was developed. The paper discusses various aspects including model construction, test design, and result validation, proposing an overall control strategy for series hybrid aviation propulsion systems – utilizing lithium-ion batteries to stabilize grid voltage and using the turboshaft-generator unit as the primary power source to meet the main power demands of the electric propulsion system. The established model consists of four modules: turboshaft engine, power generator, voltage-stabilizing battery, and electric motor/propeller.
Technical Paper

HIL based Real-Time Co-Simulation for BEV Fault Injection Testing

2023-08-28
2023-24-0181
Battery electric vehicle (BEV) adoption and complex powertrains pose new challenges to automotive industries, requiring comprehensive testing and validation strategies for reliability and safety. Hardware-in-the-loop (HIL) based real-time simulation is important, with cooperative simulation (co-simulation) being an effective way to verify system functionality across domains. Fault injection testing (FIT) is crucial for standards like ISO 26262. This study proposes a HIL-based real-time co-simulation environment that enables fault injection tests in BEVs to allow evaluation of their effects on the safety of the vehicle. A Typhoon HIL system is used in combination with the IPG CarMaker environment. A four-wheel drive BEV model is built, considering high-fidelity electrical models of the powertrain components (inverter, electric machine, traction battery) and the battery management system (BMS).
Technical Paper

An Analytical Method for Prediction of High Altitude Total Water Exposure for In-Service Long Range Aircraft

2023-06-15
2023-01-1435
To support an industry wide response to an EASA proposed Special Condition regarding the threat of in-flight supercooled liquid water icing conditions at altitudes above FL300, Boeing 777 fleet data were used to estimate the frequency and severity of such icing occurrences. The data were from the calendar year 2019 and included ~ 950,000 airline revenue flights from around the world by multiple operators. The unique architecture of the Primary Ice Detection System (PIDS) on that model, in addition to robust meteorological data that was able to be correlated, afforded an opportunity to conservatively estimate the Total Water Exposure (TWE) and thus the Liquid Water Content (LWC) of the icing encounters captured at FL295 and above. This paper will outline the key methods used and present the findings.
Technical Paper

Design and Testing of an Indirect Ice Detection Methodology

2023-06-15
2023-01-1493
Distinct atmospheric conditions containing supercooled large droplets (SLD) have been identified as cause of severe accidents over the last decades as existing countermeasures even on modern aircraft are not necessarily effective against SLD-ice. Therefore, the detection of such conditions is crucial and required for future transport aircraft certification. However, the reliable detection is a very challenging task. The EU funded Horizon 2020 project SENS4ICE targets this gap with new ice detection approaches and innovative sensor hybridization. The indirect ice detection methodology presented herein is key to this approach and based on the changes of airplane flight characteristics under icing influence. A performance-based approach is chosen detecting an abnormal flight performance throughout the normal operational flight. It is solely based on a priori knowledge about the aircraft characteristic and the current measurable flight state.
Technical Paper

Estimating Battery State-of-Charge using Machine Learning and Physics-Based Models

2023-04-11
2023-01-0522
Lithium-ion and Lithium polymer batteries are fast becoming ubiquitous in high-discharge rate applications for military and non-military systems. Applications such as small aerial vehicles and energy transfer systems can often function at C-rates greater than 1. To maximize system endurance and battery health, there is a need for models capable of precisely estimating the battery state-of-charge (SoC) under all temperature and loading conditions. However, the ability to perform state estimation consistently and accurately to within 1% error has remained unsolved. Doing so can offer enhanced endurance, safety, reliability, and planning, and additionally, simplify energy management. Therefore, the work presented in this paper aims to study and develop experimentally validated mathematical models capable of high-accuracy battery SoC estimation.
Journal Article

Performance Evaluation of Lithium-ion Batteries under Low-Pressure Conditions for Aviation Applications

2023-04-11
2023-01-0504
Electrification is getting more important in the aviation industry with the increasing need for reducing emissions of carbon dioxide and fuel consumption. It is crucial to assess the behavior of Li-Ion batteries at high-altitude conditions to design safe and reliable battery packs. This paper aims at benchmarking the performance of different formats of battery cells (pouch cells and cylindrical cells) in low-pressure environments. A test setup was designed and fabricated to replicate the standard procedure defined by the RTCA DO-311 standard, such as the altitude test and rapid decompression test. During the test voltage, current, temperature, and pressure were monitored, and the evaluation criteria is based on the capacity retention, along with the structural integrity of the cell. From preliminary tests, it was observed that cylindrical cells do not show a significant change in performance at low-pressure conditions thanks to their steel casing.
Technical Paper

Aircraft Aerodynamic Technology Review - A Tool for Aviation Performance and Sustainability Improvement

2023-02-10
2022-36-0022
The aviation industry (passenger and freight), which currently accounts for 2.5% of the global CO2 emissions (1.9% of global greenhouse gas (GHG) emissions), is continuously under pressure to reduce its environmental footprint, given its historical and forecasted environmental track, strongly affected by the remarkable air traffic volume increase rates, albeit with a slower growth in emissions, due to the massive aviation's efficiency improvements, driven by the in the design and technology(more efficient and larger) aircrafts; improved operational practices and increased load factors (more passengers and freight per flight). Nevertheless, it has not been enough to tackle the rapidly increasing CO2 emissions (26% in the 2013-2018 timeframe and expected to continue increasing), which ultimately could grow between 2.4 and 3.6 times by 2050.
Research Report

The Use of eVTOL Aircraft for Military Applications: Last-mile Transport and Logistics

2022-11-15
EPR2022025
Recent advancements in eVTOL aircraft have generated significant interest within and beyond the traditional aviation industry. One promising application is for last-mile (and middle-mile) military transport and logistics, which can complement current mission capabilities and enhance operational readiness. With the dynamic and varying global challenges facing military operations, eVTOL aircraft can offer timely, on-demand, and potentially cost-effective aerial mobility components to the overall solution.
X