Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Structural Loads for Crew Escape System (CES) of Gaganyaan Launch Vehicle During Abort

2024-06-01
2024-26-0453
Abstract : In any human space flight program, safety of the crew is of utmost priority. In case of exigency during atmospheric flight, the crew is safely and quickly rescued from the launch vehicle using Crew escape system. Crew escape system is a crucial part of the Human Space flight vehicle which carries the crew module away from the ascending launch vehicle by firing its rocket motors (Pitch Motor (PM), Low altitude Escape Motor (LEM) and High altitude Escape Motor (HEM)). The structural loads experienced by the crew escape system during the mission abort are severe as the propulsive forces, aerodynamic forces and inertial forces on the vehicle are significantly high. Since the mission abort can occur at anytime during the ascent phase of the launch vehicle, trajectory profiles are generated for abort at every one second interval of ascent flight time considering several combinations of dispersions on various propulsive parameters of abort motors and aero parameters.
Technical Paper

FE Modelling and Experimental Evaluation for the Surface Integrity of Thin Walled Aluminum Alloy

2024-06-01
2024-26-0429
Abstract: The present study discusses about the effect of installation torque on the surface and subsurface deformations for thin walled 7075 aluminum alloy used in Aerospace applications. A FE model was constructed to predict the effect of torque induced stresses on thin walled geometry followed with an experimentation. A detailed surface analysis was performed on 7075 aluminum in terms of superficial discontinuities, residual stresses, and grain deformations. The localized strain hardening resulting from increased dislocation density and its effect on surface microhardness was further studied using EBSD and micro indentation. The predicted surface level plastic strain of .25% was further validated with grain deformations measured using optical and scanning electron microscopy.
Technical Paper

BIST Based Method for SEE Testing of Vikram1601 Processor

2024-06-01
2024-26-0433
A novel method for Single Event Effect (SEE) Radiation Testing using Built-In Self-Test (BIST) feature of indigenously developed Vikram1601 processor is discussed. The novelty is that the usage of BIST avoids need of exhaustive test vectors to ensure test coverage of all the internal registers and physical memory to store them. So processor is the only element vulnerable to radiation damage during testing. The test design was carried out at VSSC, Trivandrum and the testing was carried out at IUAC, Delhi. In the first part, a brief introduction, need and methods of radiation testing of electronics especially SEE of radiation on Silicon based devices, different radiation effects, radiation damage mechanisms and testing methods are described. A brief introduction to Vikram1601 processor, the instruction – TST, used as BIST and testing scheme implementation using TST for studying the SEE is explained.
Standard

OnQue Digital Standards System - Standards

2024-05-01
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
Standard

Aluminum Alloy, Extruded Profiles (2395-T84), 3.95Cu - 1.15Li - 0.3Ag - 0.5Mg - 0.1Zr, Solution Heat Treated, Stress Relieved by Stretching, and Aged

2024-04-25
CURRENT
AMS4359A
This specification covers an aluminum alloy in the form of extruded rods, bars, and profiles (shapes) 0.040 to 1.500 inches (1.02 to 38.10 mm), inclusive, in thickness, and produced with maximum cross-sectional area of 23.25 square inches (15000 mm2) and a maximum circumscribing circle diameter (circle size) of 15.5 inches (394 mm) (see 2.4.1 and 8.6).
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Technical Paper

Lightweight Design of Integrated Hub and Spoke for Formula Student Racing Car

2024-04-09
2024-01-2080
In the racing world, speed is everything, and the Formula Student cars are no different. As one of the key means to improve the speed of the car, lightweight plays an important role in the racing world. The weight reduction of unsprung metal parts can not only improve the driving speed, but also effectively optimize the dynamic of the car, so the lightweight design of unsprung parts has attracted much attention. In the traditional Formula Student racing car, the hub and spoke are two independent parts, they are fixed by four hub bolts or a central locking nut, the material of these fasteners is usually steel, so it brings a lot of weight burden. In order to achieve unsprung lightweight, a new type of wheel part design of Formula Student racing car is proposed in this paper. The hub and spoke are designed as integrated aluminum alloy parts, effectively eliminating the mass of hub bolts or central locking nuts.
X