Refine Your Search

Topic

Author

Search Results

Standard

OnQue Digital Standards System - Standards

2024-04-29
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
Standard

Titanium Alloy Bars, Forgings, and Flash-Welded Rings, 5Al - 2.5V - 4Sn - 1Co - 0.8Fe Annealed

2024-04-25
CURRENT
AMS6903
This specification covers a titanium alloy in the form of bars, forgings, and flash-welded rings up through 12.000 inches (304.80 mm), inclusive, in diameter or least distance between parallel sides, and stock of any size for forging or flash-welded rings. Bars, forgings, and flash-welded rings with a nominal thickness of 3.000 inches (79.20 mm) or greater shall have a maximum cross-sectional area of 113 square inches (729 cm2) (see 8.5).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2024-04-23
WIP
J3105
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
Standard

Liquid Leak Tightness Evaluation Methodology for EV Battery Packs Informational Report

2024-04-23
CURRENT
J3277_202404
This technical information report (IR) presents a methodology to evaluate battery pack liquid leak tightness attributes to be used in a production line to satisfy the functional requirement for IPX7, water ingress requirement, and no sustainable coolant leakage for coolant circuits. The Equivalent Channel Method is used as a suggested production leak tightness requirement for a given battery pack design that will correlate and assure that the battery pack meets or exceeds its functional requirement. Obtaining the specific geometry of the Equivalent Channel (EC) for a given battery pack is done analytically and empirically in consideration of the product design limitations. This document is a precursor to J3277-1, which will present the practices to qualify that product leak tightness is equal or better than the maximum allowed EC for that product using applicable and commercially available leak test technologies.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2024-03-26
WIP
J1634
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal emission test procedure (FTP) using the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedure. Realistic alternatives should be allowed for new technology.
Standard

Vision Factors Considerations in Rearview Mirror Design

2024-03-18
CURRENT
J985_202403
The design and location of rear-viewing mirrors or systems, and the presentation of the rear view to the driver can best be achieved if the designer and the engineer have adequate references available on the physiological functions of head and eye movements and on the perceptual capabilities of the human visual system. The following information and charts are provided for this purpose. For more complete information of the relationship of vision to forward vision, see SAE SP-279.
Standard

Motor Vehicle Brake Fluid

2024-03-12
CURRENT
J1703_202403
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard

Digital Annex of Diagnostic Trouble Code Definitions and Failure Type Byte Definitions

2024-03-06
CURRENT
J2012DA_202403
The J2012 Digital Annex of Diagnostic Trouble Code Definitions Spreadsheet provides DTC information in an excel format for use in your organization's work processes. The column headings include the same information as contained in the J2012 standard. Information in the excel spreadsheet will be updated several times annually and the spreadsheet includes a column heading denoting which DTCs have been updated in the current version.
Standard

SAE Child Passenger Safety Glossary

2024-03-01
CURRENT
J2939_202403
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada.
Standard

Standard Four-Letter Coding as an Identification Method for Alternative Fuel Vehicles

2024-03-01
CURRENT
J3108/1_202403
SAE J3108 RP provides fuel and hazard guidance for first and second responders of incidents associated with alternative fueled vehicles. The intent of this SAE J3108-1 RP is to remain with the limited number of seven intuitive and colored letters contained in each of the first two letter positions (72=49). However, the use of four letters plus nine digits (to not use either 0 or o) permits up to 1185921 unique identifiers (334) for future expansion. The RP is not intended to replace the standards for SAE J2990 format emergency response guide (ERG) created by automotive manufacturers for use at the scene of an emergency. Automotive OEMs are encouraged to reference this RP for industry design guidance when creating vehicle requirements and ERGs. This coding should be consistent with other vehicle badging with the goal of providing additional clarity.
Standard

Metallic Connections for Fluid Power and General Use - Part 1: 37 Degree Flared Fittings

2024-03-01
CURRENT
J514/1_202403
This part of SAE J514 covers general and dimensional specifications for 37 degree flared tube fittings. Also included are 37 degree flared fittings with NPTF pipe threads in Appendix B. These fittings are intended for general application in hydraulic systems on industrial equipment and commercial products. These fittings are capable of providing leak-proof, full flow connections in hydraulic systems operating at working pressures as specified in Table 6. Since many factors influence the pressure at which a hydraulic system will or will not perform satisfactorily, the values shown in Table 6 should not be construed as a guaranteed minimum. For any application, it is recommended that sufficient testing be conducted and reviewed by both the user and fitting manufacturer to assure that performance levels will be safe and satisfactory.
Standard

Plug-In Electrical Vehicle Charge Rate Reporting and Test Procedures

2024-02-28
WIP
J2953/4
This document facilitates clear and consistent comparisons of realistic charging capabilities of passenger vehicles via commercially available EVSE. Common test procedures and metrics are established for both vehicles and EVSE operating without limitations in nominal conditions. This document does not attempt to address performance variations of EV-EVSE interactions outside of nominal conditions such as extreme temperatures, variable SOCs, and so on.
Standard

Driver-Vehicle Interface Considerations for Lane Keeping Assistance Systems

2024-02-27
CURRENT
J3048_202402
The purpose of this document is to provide guidance for the implementation of DVI for momentary intervention-type LKA systems, as defined by ISO 11270. LKA systems provide driver support for safe lane keeping operations via momentary interventions. LKA systems are SAE Level 0, according to SAE J3016. LKA systems do not automate any part of the dynamic driving task (DDT) on a sustained basis and are not classified as an integral component of a partial or conditional driving automation system per SAE J3016. The design intent (i.e., purpose) of an LKA system is to address crash scenarios resulting from inadvertent lane or road departures. Drivers can override an LKA system intervention at any time. LKA systems do not guarantee prevention of lane drifts or related crashes.
Standard

SAE Instrumented Arm User’s Manual

2024-02-27
CURRENT
J2855_202402
This user’s manual covers the instrumented arm for the Hybrid III 5th Percentile Small Female dummy as well as the SID –IIs dummy. It is intended for technicians and engineers who have an interest in assessing arm injury from the use of frontal and side impact airbags. It covers the construction, disassembly and reassembly, available instrumentation, and segment masses.
Standard

High-Flow Prescriptive Fueling Protocols for Gaseous Hydrogen Powered Medium and Heavy-Duty Vehicles

2024-02-23
CURRENT
J2601/5_202402
This TIR establishes high-flow fueling protocols, including their process limits for fueling of compressed gaseous hydrogen vehicles at peak flow rates from 60 to 300 g/s with compressed hydrogen storage system (CHSS) volume capacities between 248.6 and 7500 L which have been qualified to UN GTR #13. This document is initially being published as a TIR due to limited field testing of the fueling protocols. Once the fueling protocols have been field tested, the SAE Fuel Cell Standards Committee Interface Task Force intends to publish a revision to this document as an SAE Standard.
X