Refine Your Search

Topic

Search Results

Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Technical Paper

A Hybrid Approach Combining LSTM Networks and Kinematic Rules for Vehicle Velocity Estimation

2022-03-29
2022-01-0157
Vehicle speeds, in both longitudinal and lateral directions, are vital signals for vehicular electronic control systems. In in-wheel motor-driven vehicles (IMDVs), because no slave wheel can be used for reference, it becomes more challenging to conduct velocity estimation, especially when all wheels turn to slip. To reduce the dependence of speed estimation on physical plant parameters and environment perception, in this work, we develop a new method that estimates the longitudinal and lateral velocities of an IMDV by using the kinematic model with the Kalman Filter. For longitudinal velocity measurement, we propose a hybrid approach combining Long-Short Term Memory (LSTM) networks and the kinematic rules to obtain a reliable estimation. More specifically, when at least one effective driven wheel is available, that is, no-slip happening, the longitudinal velocity can be derived using the average of those effective wheels' rotational speeds.
Technical Paper

A New Design for Dedicated Hybrid Transmission (DHT) Product Platform Development Solution

2022-03-29
2022-01-0670
With increasing pressure for reduction in CO2 emissions and stricter fuel targets from road vehicles, OEMs around the globe have to electrify their vehicle range to meet increasingly challenging emission standards in recent years and new transmission technologies are gaining more attention in different main markets. The actual and future powertrain development has three major directions in order to reduce or avoid emissions in the transportation sector: Hybrid Vehicles: Hybrid Electric Vehicles (HEV), Plug-in HEV (PHEV) Electric Vehicles (EV); Range Extender Electric Vehicle (REEV); Fuel Cell Electric Vehicles (FCEV), Range Extender FCEV (REFCEV). This paper presents a new type Hybrid transmission which is called “DHT (Dedicated Hybrid Transmission)” technology for cost-effective HEVs and PHEVs; it permits the design of very compact automatic transmissions with an integrated high-voltage electric motor on the output side of the transmission.
Technical Paper

Comparison between Different Modelling Methods of Secondary Path to Maximize Control Effect for Active Engine Mounts

2021-04-06
2021-01-0668
Active engine mount (AEM) is an effective approach which can optimize the noise, vibration and harshness (NVH) performance of vehicles. The filtered-x-least-mean-squares (FxLMS) algorithm is widely applicated for vibration attenuation in AEMs. However, the performance of FxLMS algorithm can be deteriorated without an accurate secondary path estimation. First, this paper models the secondary path using finite impulse response (FIR) model, infinite impulse response (IIR) model and back propagation (BP) neural network model and the model errors of which are compared to determine the most accurate and robust modeling method. After that, the influence of operation frequency on accuracy of the secondary path model is analyzed through simulation approach. Then, the impact of reference signal mismatch on the control effect is demonstrated to study the robustness of FxLMS algorithm.
Technical Paper

Object Detection Method of Autonomous Vehicle Based on Lightweight Deep Learning

2021-04-06
2021-01-0192
Object detection is an important visual content of the autonomous vehicle, the traditional detecting methods usually cost a lot of computational memory and elapsed time. This paper proposes to use lightweight deep convolutional neural network (MobilenetV3-SSDLite) to carry out the object detection task of autonomous vehicles. Simulation analysis based on this method is implemented, the feature layer obtained after h-swish activation function in the first Conv of the 13th bottleneck module in MobilenetV3 is taken as the first effective feature layer, and the feature layer before pooling and convolution of the antepenultimate layer in MobilenetV3 is taken as the second effective feature layer, and these two feature layers are extracted from the MobilenetV3 network.
Technical Paper

An Optimized Design of Multi-Chamber Perforated Resonators to Attenuate Turbocharged Intake System Noise

2021-04-06
2021-01-0669
The turbocharger air intake noise during transient conditions like wide open throttle and tip-in/out affects the passenger ride comfort. This paper aims to study an optimized design of multi-chamber perforated resonators to attenuate this noise. The noise produced by a turbocharger in a test vehicle has been measured to find out the noise spectral characteristics which can be used to design the acoustic targets including the amplitude and frequency range of transmission loss (TL). The structural parameters of the resonators are optimized based on genetic algorithm (GA) and two-dimensional prediction theory of the resonator TL. The optimized resonators are installed on the test vehicle to verify the actual noise reduction effect. The results suggest that the broadband noise has been eliminated, and subjective feelings are greatly improved.
Technical Paper

Nonlinear Modeling and Characteristic Analysis of Engine Shake Considering Air Engine Mount

2021-04-06
2021-01-0676
Attributable to its comprehensive advantages of good vibration isolation performance and low cost, air engine mount is gradually being applied in vehicle powertrain vibration reduction. In the present paper, a full vehicle nonlinear model considering air engine mount was established to describe the characteristics of engine shake better. A Jacobian-free Newton-Krylov (JFNK) method for solving nonlinear equations was proposed to simulate the model more efficiently. The result demonstrated that air engine mount has great influence on engine shake characteristics under the front wheel excitation. Then the influence of air engine mount parameters on engine shake characteristics was discussed. Finally, the engine shake characteristics considering air engine mount and hydraulic engine mount were compared and the result showed the former resonance frequency was higher.
Technical Paper

Novel Research for Energy Management of Plug-In Hybrid Electric Vehicles with Dual Motors Based on Pontryagin’s Minimum Principle Optimized by Reinforcement Learning

2021-04-06
2021-01-0726
The plug-in hybrid electric vehicles with dual-motor and multi-gear structure can realize multiple operation modes such as series, parallel, hybrid, etc. The traditional rule-based energy management strategy mostly selects some of the modes (such as series and parallel) to construct the energy management strategy. Although this method is simple and reliable, it can’t fully exert the full potential of this structure considering both economy and driving performance. Therefore, it is very important to study the algorithm which can exert the maximum potential of the multi-degree-of-freedom structure. In this paper, a new RL-PMP algorithm is proposed, which does not divide the operation modes, and explores the optimal energy allocation strategy to the maximum extent according to the economic and drivability criteria within the allowable range of the characteristics of the power system components.
Journal Article

Active Launch Vibration Control of Power-Split Hybrid Electric Vehicle Considering Nonlinear Backlash

2021-04-06
2021-01-0667
The backlash between engaging components in a driveline is unavoidable, especially when the gear runs freely and collides with the backlash, the impact torque generated increases the vibration amplitude. The power-split hybrid electric vehicle generates output torque only from the traction motor during the launching process. The nonlinear backlash can greatly influence the driveability of the driveline due to the rapid response of the traction motor and the lack of the traditional clutches and torsional shock absorbers in the powertrain. This paper focuses on the launch vibration of the power-split hybrid electric vehicle, establishes a nonlinear driveline model considering gear backlash, including an engine, two motors, a Ravigneaux planetary gear set, a reducer, a differential, a backlash assembly, half shafts, and wheels.
Technical Paper

Optimization of Electric Vacuum Pump Mount to Improve Sound Quality of Electric Vehicle

2020-04-14
2020-01-1259
The noise and vibration of electric vacuum pump (EVP) become a major problem for electric vehicles when the vehicle is stationary. This paper aims at the EVP’s abnormal noise of an electric vehicle when stationary. Driver’s right ear (DRE) noise was tested and spectrogram analysis was carried out to identify the noise sources. In order to attenuate this kind of abnormal noise, a new EVP rubber mount with a segmented structure was introduced, which optimized the transfer path of vibration. Then dynamic stiffness and fatigue life of the EVP mount with different rubber hardness were calculated through finite element analysis (FEA) approach. Bench tests of fatigue life and DRE noise were performed to validate the FEA results. Test data of the sample mount shows that sound pressure level of DRE was dramatically attenuated and thus passengers’ ride comfort was enhanced.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

An FxLMS Controller for Active Control Engine Mount with Experimental Secondary Path Identification

2020-04-14
2020-01-0424
Active engine mounts (AEMs) notably contribute to ensuring superior performance of vehicle’s noise, vibration, and harshness. This paper incorporates a filtered-x-least-mean-squares (FxLMS) controller into the active control engine mount system to attenuate the transmitted force to the body. To avoid the error caused by substituting the load cell for acceleration transducer, the FIR model of the secondary path was obtained by experiment. Finally, a hardware-in-the-loop testing system is built to verify the performance of the active engine mount. It can be observed from the test results that the vibration is reduced notably after control, which demonstrates the effectiveness of the active engine mount and the controller in vibration attenuation.
Journal Article

Acoustic Characteristics Prediction and Optimization of Wheel Resonators with Arbitrary Section

2020-04-14
2020-01-0917
Tire cavity noise of pure electric vehicles is particularly prominent due to the absence of engine noise, which are usually eliminated by adding Helmholtz resonators with arbitrary transversal section to the wheel rims. This paper provides theoretical basis for accurately predicting and effectively improving acoustic performance of wheel resonators. A hybrid finite element method is developed to extract the transversal wavenumbers and eigenvectors, and the mode-matching scheme is employed to determine the transmission loss of the Helmholtz resonator. Based on the accuracy validation of this method, the matching design of the wheel resonators and the optimization method of tire cavity noise are studied. The identification method of the tire cavity resonance frequency is developed through the acoustic modal test. A scientific transmission loss target curve and fitness function are defined according to the noise characteristics.
Technical Paper

mDSF: Improved Fuel Efficiency, Drivability and Vibrations via Dynamic Skip Fire and Miller Cycle Synergies

2019-04-02
2019-01-0227
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states: high-charge fire, low-charge fire, and skip (deactivation). The low-charge fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, high-charge firing mode.
Technical Paper

Effect of a Perforated Resonator on the Flow Performances of the Turbocharged Intake System for a Diesel Engine

2018-04-03
2018-01-0678
The flow issues of the turbocharged intake system for a diesel engine are mainly introduced in this work and the effects of a multi-chamber perforated resonator which can efficiently attenuate broadband noise and has compact structure on the flow performances of the intake system is analyzed by contrast. Based on the acoustic grid resulting from pre-processing of 3D models for finite element analysis, a computational fluid dynamics flow simulation comparative analysis between the intake systems with and without a resonator including pressure and velocity distribution is conducted with the software Star-CCM+. The simulation results indicate that the air pressure drop of the intake system with a resonator is slightly higher than that of the intake system without a resonator but it is still relatively low compared with that of the entire intake system.
Technical Paper

Influence of Early and Late Fuel Injection on Air Flow Structure and Kinetic Energy in an Optical SIDI Engine

2018-04-03
2018-01-0205
The turbulent in-cylinder air flow and the unsteady high-pressure fuel injection lead to a highly transient air fuel mixing process in spark-ignition direct-injection (SIDI) engines, which is the leading cause for combustion cycle-to-cycle variation (CCV) and requires further investigation. In this study, crank-angle resolution particle image velocimetry (PIV) was employed to simultaneously measure the air flow and fuel spray structure at 1300 rpm in an optically accessible single-cylinder SIDI engine. The measurement was conducted at the center tumble plane of the four-valve pent-roof engine, bisecting the spark plug and fuel injector. 84 consecutive cycles were recorded for three engine conditions, i.e. (1) none-fueled motored condition, (2) homogeneous-charge mode with start of injection (SOI) during intake (50 crank-angle degree (CAD) after top dead center exhaust, aTDCexh), and (3) stratified-charge mode with SOI during mid compression (270 aTDCexh).
Technical Paper

Full Vehicle Dynamic Modeling for Engine Shake with Hydraulic Engine Mount

2017-06-05
2017-01-1908
The statement of the engine shake problem is presented through comparing the quarter vehicle models with the rigid-connected and flexible-connected powertrain which is supported on the body by a rubber mount. Then the model is extended by replacing the rubber mount as a hydraulic engine mount (HEM) with regard to the inertia and resistance of the fluid within the inertia track. Based on these, a full vehicle model with 14 degree of freedoms (DOFs) is proposed to calculate the engine shake, which consists of 6 of the powertrain, 1 of the fluid within the inertia track of the HEM, 3 of the car body and 4 of the unsprung mass. Simulation analysis based on the proposed model is implemented, through which the conclusion is drawn that the HEM has great influence on the body and seat track response subjected to front wheel inputs, compared with the rubber mount.
Journal Article

Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera

2017-03-28
2017-01-0614
Plenoptic particle tracking velocimetry (PTV) shows great potential for three-dimensional, three-component (3D3C) flow measurement with a simple single-camera setup. It is therefore especially promising for applications in systems with limited optical access, such as internal combustion engines. The 3D visualization of a plenoptic imaging system is achieved by inserting a micro-lens array directly anterior to the camera sensor. The depth is calculated from reconstruction of the resulting multi-angle view sub-images. With the present study, we demonstrate the application of a plenoptic system for 3D3C PTV measurement of engine-like air flow in a steady-state engine flow bench. This system consists of a plenoptic camera and a dual-cavity pulsed laser. The accuracy of the plenoptic PTV system was assessed using a dot target moved by a known displacement between two PTV frames.
Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Technical Paper

An Improved PID Controller Based on Particle Swarm Optimization for Active Control Engine Mount

2017-03-28
2017-01-1056
Manufacturers have been encouraged to accommodate advanced downsizing technologies such as the Variable Displacement Engine (VDE) to satisfy commercial demands of comfort and stringent fuel economy. Particularly, Active control engine mounts (ACMs) notably contribute to ensuring superior effectiveness in vibration attenuation. This paper incorporates a PID controller into the active control engine mount system to attenuate the transmitted force to the body. Furthermore, integrated time absolute error (ITAE) of the transmitted force is introduced to serve as the control goal for searching better PID parameters. Then the particle swarm optimization (PSO) algorithm is adopted for the first time to optimize the PID parameters in the ACM system. Simulation results are presented for searching optimal PID parameters. In the end, experimental validation is conducted to verify the optimized PID controller.
X