Refine Your Search

Topic

Search Results

Technical Paper

An Experimental and Predictive Evaluation of Unsteady Gas Flow through Automotive Catalyst Elements

2005-02-01
2005-01-3134
The incorporation of one-dimensional simulation codes within engine modelling applications has proved to be a useful tool in evaluating unsteady gas flow through elements in the exhaust system. This paper reports on an experimental and theoretical investigation into the behaviour of unsteady gas flow through catalyst substrate elements. A one-dimensional (1-D) catalyst model has been incorporated into a 1-D simulation code to predict this behaviour. Experimental data was acquired using a ‘single pulse’ test rig. Substrate samples were tested under ambient conditions in order to investigate a range of regimes experienced by the catalyst during operation. This allowed reflection and transmission characteristics to be quantified in relation to both geometric and physical properties of substrate elements.
Technical Paper

Pressure Loss Characteristics in Catalytic Converters

2003-09-16
2003-32-0061
A technique has been developed to study the axial static pressure profile through the channels of a 400 cells per square inch (cpsi) catalytic converter monolith. The shape of the profile proved different from the accepted laminar flow profile, although the flow conditions are clearly laminar within the channels of the converter. The fact that the inner surfaces of the channels are extremely rough, and that this roughness is highly irregular, is thought to have an effect on the developed pressure profile. The measured profile was compared against the pressure profiles predicted by the most popular models in the published literature. A two-point criterion was developed to distinguish among those models. It was observed that Shah's model [1]* for the pressure drop along a square duct is the most appropriate. Additional static pressure measurements were taken both before and after the catalyst element and used to calculate the entrance and exit total pressure loss coefficients.
Technical Paper

REDUCING EXHAUST EMISSIONS AND INCREASING POWER OUTPUT USING A TUNED EXHAUST PIPE ON A TWO-STROKE ENGINE

2001-12-01
2001-01-1853
At the 1999 SETC meeting, a paper presented a simple, tuned and silenced exhaust system for a two-stroke engine which theoretically reduced both noise and exhaust emissions and increased engine power and fuel efficiency. In this paper that design concept is applied to a small 56 cc industrial engine and experimentally shown to deliver the projected behaviour which was predicted in that earlier publication. Experimental test results are presented for power output, fuel consumption, and exhaust emissions to illustrate these statements. An accurate engine simulation software package (VIRTUAL 2-STROKE) is employed to model the entire two-stroke engine and to demonstrate not only its effectiveness as a design tool in this area but also that it can accurately predict the above-mentioned performance and emission characteristics.
Technical Paper

An Assessment of a Stratified Scavenging Process Applied to a Loop Scavenged Two-Stroke Engine

1999-09-28
1999-01-3272
Stratified scavenging has been applied to two-stroke engines to improve fuel consumption and reduce exhaust emissions. To evaluation how this is achieved a stratified scavenging process was simulated using a three-gas single-cycle scavenging apparatus. The experiment simulated the fuel stream entering the rear transfer port of a five port cylinder and air streams entering the remaining ports. The scavenging efficiency and fuel trapping are calculated after the cycle by examining the cylinder contents. The design of the apparatus is particularly suited to investigating cylinder design changes during the prototype stage of engine development. A simulation of the stratified scavenging experiment using the Computational Fluid dynamics (CFD) code VECTIS, showed good correlation with measured results. The simulation provides a real insight into the cylinder flow behaviour of the separate fuel and air streams entering the cylinder.
Technical Paper

Stratified Scavenging Applied to a Small Capacity Two-Stroke Scooter for the Reduction of Fuel Consumption and Emissions

1999-09-28
1999-01-3271
The advantages of high power to density ratio and low manufacturing costs of a two-stroke engine compared to a four-stroke unit make it currently the most widely used engine type for 50cc displacement 2-wheelers. This dominance is threatened by increasingly severe exhaust emissions legislation, forcing manufactures to develop their two-stroke engines to comply with the legislation. This paper describes a simple solution to reduce these harmful emissions in a cost effective manner, for a scooter application. The method of stratified scavenging is achieved by delivering the fuel into the rear transfer passage from a remote mechanical fuel metering device, operated by intake manifold pressure. Air only is delivered into the cylinder from the remaining transfer passages which are directed towards the rear transfer port, thus impeding the fuel from reaching the exhaust during the scavenging process.
Technical Paper

An Experimental Investigation into the Effect of Bore/Stroke Ratio on a Simple Two-Stroke Cycle Engine

1999-09-28
1999-01-3342
This paper describes an experimental investigation into the effect of bore/stroke ratio on a simple two-stroke engine. This was achieved with a special purpose engine of modular design. The engine allowed four combinations of bore and stroke to be contrived to yield a common swept volume of 400 cm3 with bore/stroke ratios of: 0.8, 1.0, 1.2 and 1.4. Other factors that might affect engine performance were standardised: the exhaust, intake and ignition systems were common, the combustion chamber designs were similar, scavenge characteristics were similar, port timings and time-areas were kept the same, and cylinder and crankcase compression ratios were also kept the same. The most important conclusions were: Engine power was greatest with the compromise bore/stroke ratio of 1.0 or 1.2. Combustion efficiency tended to decrease with increasing bore/stroke ratio. Mechanical efficiency tended to increase with increasing bore/stroke ratio.
Technical Paper

Catalyst Deactivation on a Two-Stroke Engine

1998-09-14
982015
With the legislative demands increasing on recreational vehicles and utility engined applications, the two-stroke engine is facing increasing pressure to meet these requirements. One method of achieving the required reduction is via the introduction of a catalytic converter. The catalytic converter not only has to deal with the characteristically higher CO and HC concentration, but also any oil which is added to lubricate the engine. In a conventional two-stroke engine with a total loss lubrication system, the oil is either scavenged straight out the exhaust port or is entrained, involved in combustion and is later exhausted. This oil can have a significant effect on the performance of the catalyst. To investigate the oiling effect, three catalytic converters were aged using a 400cm3 DI two-stroke engine. A finite level of oil was added to the inlet air of the engine to lubricate the internal workings. The oil flow rate is independent of the engine speed and load.
Technical Paper

Reducing Exhaust Hydrocarbon Emissions from a Small Low Cost Two-Stroke Engine

1998-09-14
982013
An experimental and theoretical investigation to minimise the hydrocarbon emissions from a 25 cm3 two-stroke engine with finger transfer ports is described. Finger ports have the side of each passage closest to the cylinder axis open to the cylinder bore making it possible to produce high-pressure die castings with the simplest of dies. Cylinders utilising this type of porting are believed to have inferior scavenging characteristics compared to those using closed or cup-handle porting. The effects of cylinder scavenging characteristics and port optimisation on engine performance were examined using a computer simulation. It is concluded that there is potential for a 70% reduction in exhaust hydrocarbon emissions through scavenging efficiency improvements and port optimisation, provided the cylinder scavenging can be developed to match that of the best existing unconventional crossflow scavenged designs.
Technical Paper

An Experimental Evaluation of the Oil Fouling Effects of Two-Stroke Oxidation Catalysts

1998-09-14
982014
Washcoat sintering and substrate meltdown have traditionally been the principle deactivating mechanisms of catalysts fitted to two-stroke engines. The reduction of the excessively high HC and CO levels responsible for these effects has therefore been the focus of considerable research which has led to the introduction of direct in-cylinder fuel injection to some larger versions of this engine. However, much less attention has been paid to the effects of oil and its additives on the performance and durability of the two-stroke catalyst. The quantity of oil emitted to the exhaust system of the majority of two-stroke engines is much greater than in four-stroke engines of comparable output due to the total loss lubrication system employed. The fundamental design of the two-stroke also permits some of this oil to ‘short-circuit’ to the exhaust in a neat or unburned form.
Technical Paper

The Effects of the Catalytic Converter on Two-Stroke Engine Performance

1997-09-08
972741
The two-stroke engine, by its nature is very dependent on the unsteady gas dynamics within an exhaust system. This is demonstrated by the tuning effects on two-stroke engines, which have been well documented. In consideration of current emissions legislation, a two-stroke engine can be fitted with a catalytic converter for the outboard, utility or automotive markets. The catalytic substrate represents a major obstruction to the flow of exhaust gas, which hinders the progression of the main exhausted pulse, and in turn effects the scavenging of the cylinder and ultimately the performance of the engine. Within this investigation, a 400 cc direct injection two-stroke engine was used with various catalysts positioned at different distances from the exhaust manifold. Comparison tests were performed between a fully lit off catalyst and a non-operational bare substrate.
Technical Paper

Correlation of Simulated and Measured Noise Emission Using a Combined 1D/3D Computational Technique

1997-02-24
970801
A combined one-dimensional, multi-dimensional computational fluid dynamic modelling technique has been developed for analysis of unsteady gas dynamic flow through automotive mufflers. The technique facilitates assessment of complex designs in terms of back-pressure and noise attenuation. The methodology has been validated on a number of common exhaust muffler arrangements over a wide range of test conditions. Comparison between measured and simulated data has been conducted on a Single-Pulse (SP) rig for detailed unsteady gas dynamic analysis and a Rotary-Valve (RV) rig in conjunction with an anechoic chamber for noise attenuation analysis. Results obtained on both experimental arrangements exhibit excellent gas dynamic and acoustic correlation. The technique should allow optimisation of a wide variety of potential muffler designs prior to prototype manufacture.
Technical Paper

Correlation of Simulated and Measured Noise Emissions and Unsteady Gas Dynamic Flow from Engine Ducting

1996-08-01
961806
One-dimensional (1-D) unsteady gas dynamic models of a number of common muffler (or silencer) elements have been incorporated into a1-D simulation code to predict the impact of the muffler on the gas dynamics within the overall system and the radiated Sound Pressure Level (SPL) noise spectrum in free-space. Correlation with measured data has been achieved using a Single-Pulse rig for detailed unsteady gas dynamic analysis and a Rotary-Valve rig in conjunction with an anechoic chamber for noise spectra analysis. The results obtained show good agreement both gas dynamically and acoustically. The incorporation of these models into a full 1-D engine simulation code should facilitate the rapid assessment of various muffler designs prior to prototype manufacture and testing.
Technical Paper

Design of Exhaust Systems for V-Twin Motorcycle Engines to Meet Silencing and Performance Criteria

1994-12-01
942514
This paper reports on the use of mathematical modelling by the GPB method of pressure wave propagation through finite systems, for the design of prototype exhaust systems and silencers for a Harley-Davidson motorcycle. The motorcycle engine is the classic 1340 cm3 45° V-twin power unit. The design objectives were to gain mid-range power and torque without loss of performance at either end of the speed range and to design silencers which would enhance the performance and the noise image of the machine. The Queen's University of Belfast (QUB) (3)* employed their unsteady gas flow modelling techniques to the design of the system and its silencers to complement a new camshaft design from Crane Cams. The results of the use of these computer based design techniques are reported as performance characteristics of power and torque for the new design by comparison with the stock system.
Technical Paper

Application of Direct Air-Assisted Fuel Injection to a SI Cross-Scavenged Two-Stroke Engine

1993-09-01
932396
A 500 cc single cylinder two-stroke engine employing cross scavenging and direct air-assisted gasoline injection is described. Preliminary engine test results are presented for 3000 rpm full load and 1600 rpm part load operating conditions. The effects of fuel injection timing on full and part load brake specific fuel consumption and exhaust emissions are examined.
Technical Paper

Reduction of Fuel Consumption and Emissions for a Small Capacity Two-Stroke Cycle Engine

1993-09-01
932393
The emissions produced from a simple carburetted crankcase scavenged two-stroke cycle engine primarily arise due to losses of fresh charge from the exhaust port during the scavenging process. These losses lead to inferior fuel consumption and a negative impact on the environment. Pressure on exhaust emissions and fuel consumption has reduced the number of applications of the two-stroke cycle engine over the years, however the attributes of simplicity, high power density and potential low manufacturing costs have ensured its continuing use for mopeds and motorcycles, small outboard engines and small utility engines. Even these last bastions of the simple two-stroke engine are being challenged by the four stroke alternative as emissions legislation becomes tighter and is newly formulated for many categories of engines. A simple solution is described which reduces short circuit and scavenge losses in a cost effective way.
Technical Paper

Correlation of an Alternative Method for the Prediction of Engine Performance Characteristics with Measured Data

1993-03-01
930501
This paper presents confirmation of the accuracy of prediction of an engine simulation model. The experimental data used to compare with the output of the simulation model are from a single cylinder four-stroke cycle engine and from a single-cylinder two-stroke cycle engine; both engines are naturally aspirated and use spark- ignition. In addition, for the two-stroke cycle engine, the experimental data includes two cylinders with different scavenging characteristics which induce variations of performance characteristics of up to 20%. The fundamentals of the theoretical approach have been presented before to SAE (1)* and this paper extends that theory by providing a detailed discussion on the inclusion of measured scavenging characteristics to enable the simulation model to predict the mechanism of the in-cylinder gas exchange process.
Technical Paper

Motored and Steady Flow Boundary Conditions Applied to the Prediction of Scavenging Flow in a Loop Scavenged Two-Stroke Cycle Engine

1990-02-01
900800
The application of in-cylinder multi-dimensional modelling to the scavenging process within the cylinder of a two-stroke cycle engine requires a prior knowledge of the flow entering that cylinder. Without this information, assumptions must be made which limit the accuracy of the theoretical simulation. This paper describes laser doppler anemometry measurements of transfer port efflux flow for a two-port loop scavenged test cylinder motored at 200 rev/min. The cylinder was externally blown to ensure scavenge flow into the cylinder over the entire transfer port open period. The test results indicate that the flow does not enter the cylinder in the port design direction, but varies as a function of port height during both port opening and closing. Comparison of motoring results with those obtained under steady flow testing of the same cylinder, shows adequate correlation, thereby justifying the use of steady flow information for dynamic simulation.
Technical Paper

An Experimental Comparison of Loop and Cross Scavenging of the Two-Stroke Cycle Engine

1986-09-01
861240
In a previous paper (6)* SAE 850178, the authors pointed out that the single-cycle gas simulation rig which they had developed would prove to be an invaluable experimental tool for the development of two-stroke cycle engine cylinders to attain better scavenging and trapping efficiency of the fresh charge. This paper reports on the use of that now proven experimental technique to examine one of the longest running, and hitherto unresolved, discussions in the field of small two-stroke cycle engines: is loop-scavenging really superior to cross-scavenging? All of the cross-scavenging tests in the paper are compared to tests conducted on loop-scavenged cylinders of the same basic geometry and which were reported previously to SAE. The main conclusion from the experimental investigation is that cross-scavenging is superior to loop-scavenging at low or modest scavenge ratios but is inferior at high scavenge ratios.
Technical Paper

Computational Fluid Dynamics Applied to Two-Stroke Engine Scavenging

1985-09-01
851519
A three dimensional computational fluid dynamics program is used to simulate theoretically the scavenging process in the loop-scavenged two-stroke cycle engine. The theoretical calculation uses the k - ε turbulence model and all calculations are confined to the in-cylinder region. The calculation geometry is oriented towards five actual engine cylinders which have been tested under firing conditions for the normal performance characteristics of power, torque, and specific fuel consumption. The same five engine cylinders have also been experimentally tested on a single-cycle gas testing rig for their scavenging efficiency - scavenge ratio characteristics. The ranking of the cylinders in order of merit in terms of scavenging efficiency by both the rig and the theoretical calculations is shown to be in good agreement with the evidence provided by the actual firing engine test results.
Technical Paper

Single Cycle Gas Testing Method for Two-Stroke Engine Scavenging

1985-02-01
850178
This paper presents a single-cycle gas simulation of the scavenging process in a two-stroke cycle engine. The apparatus used is described in the most detailed fashion and the experimental procedure is covered completely. On the apparatus is placed some eleven differing cylinders of a Yamaha 250 motorcycle engine and the scavenging efficiency - scavenge ratio characteristics of each determined experimentally. The results of these experiments are compared with the known performance characteristics of the same eleven cylinders which were obtained under firing conditions for variations of power, torque, air-flow, fuel consumption and scavenging efficiency at several speeds and throttle positions. The correlation, between the ranking of the several cylinders determined on the scavenging simulation apparatus with the performance characteristics obtained under firing conditions, is very good.
X