Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

Occupant Kinematics in Laboratory Rollover Tests: ATD Response and Biofidelity

2014-11-10
2014-22-0012
Rollover crashes are a serious public health problem in United States, with one third of traffic fatalities occurring in crashes where rollover occurred. While it has been shown that occupant kinematics affect the injury risk in rollover crashes, no anthropomorphic test device (ATD) has yet demonstrated kinematic biofidelity in rollover crashes. Therefore, the primary goal of this study was to assess the kinematic response biofidelity of six ATDs (Hybrid III, Hybrid III Pedestrian, Hybrid III with Pedestrian Pelvis, WorldSID, Polar II and THOR) by comparing them to post mortem human surrogate (PMHS) kinematic response targets published concurrently; and the secondary goal was to evaluate and compare the kinematic response differences among these ATDs.
Technical Paper

The Tolerance of the Femoral Shaft in Combined Axial Compression and Bending Loading

2009-11-02
2009-22-0010
The likelihood of a front seat occupant sustaining a femoral shaft fracture in a frontal crash has traditionally been assessed by an injury criterion relying solely on the axial force in the femur. However, recently published analyses of real-world data indicate that femoral shaft fracture occurs at axial loads levels below those found experimentally. One hypothesis attempting to explain this discrepancy suggests that femoral shaft fracture tends to occur as a result of combined axial compression and applied bending. The current study aims to evaluate this hypothesis by investigating how these two loading components interact. Femoral shafts harvested from human cadavers were loaded to failure in axial compression, sagittal plane bending, and combined axial compression and sagittal plane bending.
Technical Paper

A Comparative Analysis of the Pedestrian Injury Risk Predicted by Mechanical Impactors and Post Mortem Human Surrogates

2008-11-03
2008-22-0020
The objective of this study is to compare the risk of injury to pedestrians involved in vehicle-pedestrian impacts as predicted by two different types of risk assessment tools: the pedestrian subsystem impactors recommended by the European Enhanced Vehicle-Safety Committee (EEVC) and post-mortem human surrogates (PMHS). Seven replicate full-scale vehicle-pedestrian impact tests were performed with PMHS and a mid-sized sedan travelling at 40 km/h. The PMHS were instrumented with six-degree-of-freedom sensor cubes and sensor data were transformed and translated to predict impact kinematics at the head center of gravity, proximal tibiae, and knee joints. Single EEVC WG 17/EuroNCAP adult headform, upper legform and lower legform impactor tests of the same vehicle were selected for comparison based on the proximity of their impact locations to that of the PMHS.
Journal Article

A Computational Study of Rear-Facing and Forward-Facing Child Restraints

2008-04-14
2008-01-1233
A recent study of U.S. crash data has shown that children 0-23 months of age in forward-facing child restraint systems (FFCRS) are 76% more likely to be seriously injured in comparison to children in rear-facing child restraint systems (RFCRS). Motivated by the epidemiological data, seven sled tests of dummies in child seats were performed at the University of Virginia using a crash pulse similar to FMVSS 213 test conditions. The tests showed an advantage for RFCRS; however, real-world crashes include a great deal of variability among factors that may affect the relative performance of FFCRS and RFCRS. Therefore, this research developed MADYMO computational models of these tests and varied several real-world parameters. These models used ellipsoid models of Q-series child dummies and facet surface models of American- and Swedish- style convertible child restraints (CRS).
Technical Paper

Lateral Injury Criteria for the 6-year-old Pedestrian - Part I: Criteria for the Head, Neck, Thorax, Abdomen and Pelvis

2004-03-08
2004-01-0323
Pediatric pedestrians are frequently involved in Pedestrian versus Motor Vehicle Collisions (PMVCs). While in recent years, the automotive industry has worked towards making cars less aggressive to pedestrians, the efforts have mainly focused on adult pedestrian safety. When they have included considerations for children, only head injuries have been evaluated. The development of automotive counter-measures that provide protection for both adult and pediatric pedestrians requires access to injury criteria for the entire body that specifically account for both the age-dependent tissue properties and the pedestrian's size. The objective of the present study is to derive lateral injury criteria for the head, neck, thorax, abdomen and pelvis that can be used in finite element and multi-body simulations of PMVCs involving the 6-year-old pedestrian (corresponding injury criteria for the upper and lower extremities are derived in part II of this study).
Technical Paper

Lateral Injury Criteria for the 6-year-old Pedestrian - Part II: Criteria for the Upper and Lower Extremities

2004-03-08
2004-01-1755
Pediatric pedestrians are frequently involved in Pedestrian versus Motor Vehicle Collisions (PMVCs). While in recent years, the automotive industry has worked towards making cars less aggressive to pedestrians, the efforts have mainly focused on adult pedestrian safety. When they have included considerations for children, only head injuries have been evaluated. The development of automotive countermeasures that provide protection for both adult and pediatric pedestrians requires access to injury criteria for the entire body that specifically account for both the age-dependent tissue properties and the pedestrian's size. The objective of the present study is to derive lateral injury criteria for the upper and lower extremities that can be used in finite element and multi-body simulations of PMVCs involving the 6-year-old pedestrian (corresponding injury criteria for the head, neck, thorax, abdomen and pelvis are derived in part I of this study).
Technical Paper

Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria

2003-03-03
2003-01-0895
Previous lateral knee bending and shear tests have reported knee joint failure moments close to failure bending moments for the tibia and femur. Eight tibias, eight femurs and three knee joints were tested in lateral bending and two knee joints were tested in lateral shear. Seven previous studies on femur bending, five previous studies on tibia bending, two previous studies on knee joint bending, and one on shear were reviewed and compared with the current tests. All knee joint failures in the current study were either epiphysis fractures of the femur or soft tissue failures. The current study reports an average lateral failure bending moment for the knee joint (134 Nm SD 7) that is dramatically lower than that reported in the literature (284-351 Nm), that reported in the current study for the tibia (291 Nm SD 69) and for femur (382 Nm SD 103).
Technical Paper

The Effects of Axial Preload and Dorsiflexion on the Tolerance of the Ankle/Subtalar Joint to Dynamic Inversion and Eversion

2002-11-11
2002-22-0013
Forced inversion or eversion of the foot is considered a common mechanism of ankle injury in vehicle crashes. The objective of this study was to model empirically the injury tolerance of the human ankle/subtalar joint to dynamic inversion and eversion under three different loading conditions: neutral flexion with no axial preload, neutral flexion with 2 kN axial preload, and 30° of dorsiflexion with 2 kN axial preload. 44 tests were conducted on cadaveric lower limbs, with injury occurring in 30 specimens. Common injuries included malleolar fractures, osteochondral fractures of the talus, fractures of the lateral process of the talus, and collateral ligament tears, depending on the loading configuration. The time of injury was determined either by the peak ankle moment or by a sudden drop in ankle moment that was accompanied by a burst of acoustic emission. Characteristic moment-angle curves to injury were generated for each loading configuration.
Technical Paper

Fracture Tolerance of the Small Female Elbow Joint in Compression: The Effect of Load Angle Relative to the Long Axis of the Forearm

2002-11-11
2002-22-0010
The purpose of this study was to develop a fracture tolerance for the elbow joint, or proximal ends of the ulna and radius, relative to the fracture risk under side-impact airbag loading. Forty experiments were performed on the elbow joints of small female cadavers. The energy source, a pneumatic impactor, was configured to apply compressive loads that match the onset rate, peak force, and momentum transfer of previously conducted side-impact airbag tests with small female subjects. Three initial orientations of the impact load angle relative to the longitudinal axis of the forearm were selected based on analysis of side-impact airbag tests with the instrumented dummy upper extremity. These included loading directions that are 0°, 20°, and 30° superior of the longitudinal axis of the forearm. Post-test necropsy revealed that 11 of the 40 tests resulted in chondral, osteochondral, or comminuted fractures of the proximal radial head or the distal trochlear notch.
Technical Paper

The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction

2001-11-01
2001-22-0008
The purpose of this study is to evaluate the hard tissue injury -predictive value of various thoracic injury criteria when the restraint conditions are varied. Ten right-front passenger human cadaver sled tests are presented, all of which were performed at 48 km/h with nominally identical sled deceleration pulses. Restraint conditions evaluated are 1) force-limiting belt and depowered airbag (4 tests), 2) non-depowered airbag with no torso belt (3 tests), and 3) standard belt and depowered airbag (3 tests). Externally measured chest compression is shown to correspond well with the pre sence of hard tissue injury, regardless of restraint condition, and rib fracture onset is found to occur at approximately 25% chest compression. Peak acceleration and the average spinal acceleration measured at the first and eighth or ninth thoracic vertebrae are shown to be unrelated to the presence of injury, though clear variations in peaks and time histories among restraint conditions can be seen.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

THE EFFECT OF ACTIVE MUSCLE TENSION ON THE AXIAL INJURY TOLERANCE OF THE HUMAN FOOT/ANKLE COMPLEX

2001-06-04
2001-06-0074
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibia pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. In order to evaluate the effect of active muscle tension on the injury tolerance of the foot/ankle complex, blunt axial impact tests were performed on 44 isolated lower legs with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups, but tibia pilon fractures occurred more frequently with the addition of Achilles tension. Acoustic emission demonstrated that fracture initiated at the time of peak local axial force.
Technical Paper

Evaluation of lower limb injury mitigation from inflatable carpet in sled tests with intrusion using the Thor Lx

2001-06-04
2001-06-0092
Real-world crash investigations have suggested that lower limb injury risk is increased with the occurrence of toepan intrusion in a frontal collision. In order to more closely evaluate the effects of different modes of toepan intrusion, a rotational and translational intrusion device was built for the test sled at the University of Virginia. Sled tests were performed at a velocity of 56 km/h with a belted Hybrid III occupant and a simulated knee bolster and steering wheel air bag. Lower limb injury risk measures were obtained with Hybrid III and Thor Lx dummy lower extremities. Dummy response variables of interest included tibia axial and shear loads, tibia bending moments, ankle rotations and foot and tibia accelerations. The tests were conducted with no intrusion and with a translational intrusion with a peak deceleration of approximately 175 g's with 14 cm of translation.
Technical Paper

The Role of Axial Loading in Malleolar Fractures

2000-03-06
2000-01-0155
Though rotation is thought to be the most common mechanism of foot and ankle injury in both automobile crashes and in everyday life, axial impact loading is considered responsible for most severe lower extremity injuries. In this study, dynamic axial impact tests were conducted on 92 isolated human lower limbs. The test apparatus delivered the impact via a pendulum-driven plate which intruded longitudinally to simulate the motion of the toepan in an automobile crash. Magneto-hydrodynamic (MHD) angular rate sensors fixed to the limbs measured ankle rotations during the impact event. Malleolar or fibula fractures, which are commonly considered to be caused by excessive ankle rotation, were present in 38% (12 out of 32) of the injured specimens. Ankle rotations in these tests were always within 10° of neutral at the time of peak axial load and seldom exceeded failure boundaries reported in the literature at any point during the impact event.
Technical Paper

Experimental Devices to Simulate Toepan and Floorpan Intrusion

1997-02-24
970574
Two sled systems capable of producing structural intrusion in the footwell region of an automobile have been developed. The first, System A, provides translational toepan intrusion using actuator pistons to drive the footwell structure of the test buck. These actuator pistons are coupled to the hydraulic decelerator of the test sled and are powered by hydraulic energy from the impact event. Resulting footwell intrusion is characterized using a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Sled tests with System A indicate that it is capable of accurately and repeatably simulating toepan/floorpan intrusion into the occupant footwell. Test results, including a comparison of lower extremity response between intrusion sled tests and no intrusion sled tests, indicate that this system is capable of repeatable, controlled structural intrusion during a sled test impact.
Technical Paper

Variability of Head Injury Criteria with the Hybrid III Dummy

1996-02-01
960094
Drop testing of the Hybrid III dummy head was conducted to determine variations in Head Injury Criteria values with the point of head impact, and how the variations relate to actual head injuries. Head drop tests indicated that impacts to the temple and lower forehead posed the greatest injury risks. Moreover, the application of chamois or chalk over the head, a common practice among safety researchers to detect racial lacerations and head contacts, was found to significantly lower Head Injury Criteria values for all impact locations.
Technical Paper

Reproducing the Structural Intrusion of Frontal Offset Crashes in the Laboratory Sled Test Environment

1995-02-01
950643
The response and risk of injury for occupants in frontal crashes are more severe when structural deformation occurs in the vehicle interior. To reproduce this impact environment in the laboratory, a sled system capable of producing structural intrusion in the footwell region has been developed. The system couples the hydraulic decelerator of the sled to actuator pistons attached to the toepan and floorpan structure of the buck. Characterization of the footwell intrusion event is based on developing a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Preliminary sled tests with the system indicate that it is capable of simulating a complex sequence of toepan/floorpan translations and rotations.
Technical Paper

Thoracic Trauma Assessment Formulations for Restrained Drivers in Simulated Frontal Impacts

1994-11-01
942206
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Technical Paper

Research Program to Investigate Lower Extremity Injuries

1994-03-01
940711
The University of Virginia is investigating the biomechanical response and the injury tolerance of the lower extremities. This paper presents the experimental and simulation work used to study the injury patterns and mechanisms of the ankle/foot complex. The simulation effort has developed a segmented lower limb and foot model for an occupant simulator program to study the interactions of the foot with intruding toepan and pedal components. The experimental procedures include static tests, pendulum impacts, and full-scale sled tests with the Advanced Anthropomorphic Test Device and human cadavers. In these tests, the response of the lower extremities is characterized with analogous dummy and cadaver instrumentation packages that include strain gauges, electrogoniometers, angular rate sensors, accelerometers, and load cells. An external apparatus is applied to the surrogate's lower extremities to simulate the effects of muscle tensing.
X