Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Car Hacking with CANbus

2024-11-13
Vehicle cybersecurity vulnerabilities could impact a vehicle's safe operation. Therefore, engineers should ensure that systems are designed free of unreasonable risks to motor vehicle safety, including those that may result due to existence of potential cybersecurity vulnerabilities. The automotive industry is making vehicle cybersecurity an organizational priority.
Technical Paper

Challenges of measuring low levels of CO2 and NOx on H2-ICE

2024-07-02
2024-01-2998
Society is moving towards climate neutrality where hydrogen fuelled combustion engines (H2 ICE) could be considered a main technology. These engines run on hydrogen (H2) so carbon-based emission are only present at a very low level from the lube oil. The most important pollutants NO and NO2 are caused by the exhaust aftertreatment system as well as CO2 coming from the ambient air. For standard measurement technologies these low levels of CO2 are hard to detect due to the high water content. Normal levels of CO2 are between 400-500 ppm which is very close or even below the detection limit of commonly used non-dispersive-infrared-detectors (NDIR). As well the high water content is very challenging for NOx measuring devices, like chemiluminescence detectors (CLD), where it results in higher noise and therefore a worse detection limit. Even for Fourier-transformed-infrared-spectroscopy-analysers (FT-IR) it is challenging to deal with water content over 15% without increased noise.
Technical Paper

Evaluation and simulation of wheel steering functionality on a Road to Rig test bench

2024-07-02
2024-01-3000
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventive identify potential issues. This paper proposes an advancement test approach in the area of the overall vehicle system included steering system and power train on a “Road to Rig” test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Rotation for a better tomorrow - SKF’s journey towards decarbonization

2024-06-12
2024-37-0033
Let’s start with the uncomfortable truth, climate change is happening, and the automotive industrial network is one of the main industries contributing to greenhouse gas emissions. SKF is an energy intensive business – directly using energy, mainly in the form of electricity and gas, in its operations around the world. In addition, SKF utilizes materials, predominantly steel, and services which can be energy and carbon intensive – such as transports and raw material in production and processing. The combined impact of these direct and indirect energy uses (scope 1, 2 and 3 upstream) generates an excess of over two million metric tons of CO2e per year. This figure would however be significantly higher were it not for the actions SKF has taken to reduce both energy and carbon intensity. In 2000, we were one of the first companies to actually start to report and set climate targets.
Technical Paper

Simulation and test methods on NVH performance of axle system

2024-06-12
2024-01-2950
For electric vehicles, road noise, together with wind noise, is the most important contributor for vehicle interior noise. Road noise is very dependent on the NVH behavior of axle system including wheels and tires. Axle system is part of vehicle platform which should be compatible with different body variants. Therefore, il is important to characterize the NVH performance of an axle system independently of car body structure, so that the design the axle can be optimized at the early stage according to the global requirements of all the related vehicles. The best way to characterize the NVH performance of an axle system is to measure the blocked forces on an appropriate test rig. However, the measurement of blocked forces from an axle system requires very stiff boundary conditions which is difficult to achieve in practice. For axles with rigid mountings, it is nearly impossible to measure the blocked forces on test rig.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

BIST Based Method for SEE Testing of Vikram1601 Processor

2024-06-01
2024-26-0433
A novel method for Single Event Effect (SEE) Radiation Testing using Built-In Self-Test (BIST) feature of indigenously developed Vikram1601 processor is discussed. The novelty is that the usage of BIST avoids need of exhaustive test vectors to ensure test coverage of all the internal registers and physical memory to store them. So processor is the only element vulnerable to radiation damage during testing. The test design was carried out at VSSC, Trivandrum and the testing was carried out at IUAC, Delhi. In the first part, a brief introduction, need and methods of radiation testing of electronics especially SEE of radiation on Silicon based devices, different radiation effects, radiation damage mechanisms and testing methods are described. A brief introduction to Vikram1601 processor, the instruction – TST, used as BIST and testing scheme implementation using TST for studying the SEE is explained.
Technical Paper

Development of Deployment Mechanism for RAMBHA-LP Payload Onboard Chandrayaan-3 Lander

2024-06-01
2024-26-0455
RAMBHA-LP (Radio Anatomy of Moon Bound Hypersensitive Ionosphere and Atmosphere - Langmuir Probe) is one of the key scientific payloads onboard the Indian Space Research Organization’s (ISRO) Chandrayaan-3 mission. Its objectives were to estimate the plasma density and its variations on the near lunar surface. The probe was initially kept in a stowed condition attached to the lander. A mechanism was designed and realized to meet the functional requirement of deploying the probe at a distance of 1 meter, equivalent to the Debye length of the probe in the moon’s plasma environment. The probe deployment mechanism consists of the Titanium alloy spherical probe with a Titanium Nitride coating on its surface to achieve a constant work function, a long carbon-fiber-reinforced polymer boom, a double torsion spring, a dust-protection box, and a shape-memory alloy-based Frangibolt actuator for low-shock separation. The entire mechanism weighed less than 1.5 kilograms.
Technical Paper

Reduction in Flight Operational Costs by Automating Weather Forecast Updates

2024-06-01
2024-26-0440
A GE Aviation Systems report documents that the National Oceanic and Atmospheric Administration (NOAA) provided weather forecast data has a bias of 15 knots and a standard deviation of 13.3 knots for the 40 flights considered for the research. It also had a 0.47 bias in the temperature with a standard deviation of 0.27. The temperature errors are not as significant as the wind. There is a potential opportunity to reduce the operational cost by improving the weather forecast. The flight management system (FMS) currently uses the weather forecast, available before takeoff, to identify an optimized flight path with minimum operational costs depending on the selected speed mode. Such a flight plan could be optimum for a shorter flight because these flight path planning algorithms are very less susceptible to the accuracy of the weather forecast.
Technical Paper

Statistical Analysis on Wear Behavior of Aluminum Alloy2024–Silicon Carbide–Fly Ash Metal Matrix Composites

2024-05-06
2024-01-5058
Aluminum and its alloys entered a main role in the engineering sectors because of their applicable characteristics for indispensable applications. To enhance requisite belongings for the components, the composition of variant metal/nonmetal with light metal alloys is essential in the manufacturing industries. To enhance the wear resistance with significant strength property of the aluminum alloy 2024, the reinforcement SiC and fly ash (FA) were added with the designation Al2024 + 10% SiC; Al2024 + 5% SiC + 5% FA; and Al2024 + 10% FA via stir-casting technique. The wear resistance property of the composites was tested in pin-on-disc with a dry-sliding wear test procedure. The experiment trials were designed in Box–Behnken design (BBD) by differing the wear test parameters like % of reinforcement, sliding distance (m), and load (N).
Event

Program - 2024 AeroTech

2024-04-29
Explore AeroTech's Key Tracks, Sessions, and Presentations on hot topics in the Aerospace industry.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-04-29
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Standard

OnQue Digital Standards System - Standards

2024-04-29
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
X