Refine Your Search

Topic

Search Results

Technical Paper

Transient Flow Field Behavior after End of Spray Injection Under Different Injection and Flash Boiling Conditions

2023-09-29
2023-32-0092
The continuous improvement of gasoline direct injection (GDI) engine is largely attributed to the enhanced understanding of air-fuel mixing and combustion processes. This work investigates the transient behavior of the ambient flow fields of hexane spray using the combined diagnostics of fluorescent particle image velocimetry (FPIV) and mie scattering. A hybrid analysis approach is proposed to investigate the residual effect of spray injection on ambient flow fields, including flow similarity measurement, entrainment velocity calculation, and vortex strength detection. The work investigates the residual effect under different injection durations, injection pressure, and flash-boiling extent of the spray, and unveils correlation between vortex strength and the endurance of the residual effect.
Technical Paper

Investigation of Flash Boiling Spray and Combustion in SIDI Engine under Low-Speed Homogeneous Lean Operation

2021-04-06
2021-01-0467
Homogeneous lean combustion is expected to be a key technology to further improve the combustion and reduce emissions of spark-ignition direct-injection engines. The application of lean combustion is facing many challenges such as slow flame propagation and combustion fluctuations. Under severe operating conditions such as low-speed lean-burn conditions, the weak in-cylinder airflow worsens the fuel and air mixing yielding difficulties in stable flame kernel initiation and consequently deteriorating flame propagation. In this study, the effect of flash boiling spray on flame kernel generation, flame propagation, engine performance, and exhaust emissions of the spark ignition direct injection (SIDI) engine under homogenous lean-burn conditions are investigated. A single-cylinder four-stroke optical SIDI engine was used in this study. The in-cylinder flash boiling and subcooled sprays during engine operation were compared using the Mie scattering technique.
Technical Paper

Combustion and Emissions Improved by Using Flash Boiling Sprays and High-Energy Ignition Technologies in an Ethanol-Gasoline Optical Engine

2021-04-06
2021-01-0472
To alleviate the shortage of petroleum resources and the air pollution caused by the burning of fossil fuels, the development of renewable fuels has attracted widespread attention. Among the various renewable fuels, ethanol can be produced from biomass and does not require much modification when applied to practical engines, so it has been widely used. However, ethanol fuel has a higher heat of vaporization than gasoline, it is difficult to evaporate and atomize under cold start conditions. Besides, the catalyst has not reached the conversion temperature at this time, resulting in lower conversion efficiency. These factors all lead to higher pollutant emission levels in ethanol-gasoline blends. To solve the above problems, this research used visualization techniques to compare the effects of flash boiling and high-energy ignition technologies on the in-cylinder combustion process and pollutant emission of ethanol-gasoline blends fuel.
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
Technical Paper

Investigation of the Impacts of Spark Plug Orientation on Combustion Stability under Lean SI Operation

2020-04-14
2020-01-1121
The increasingly stringent restrictions on vehicle emissions and fuel consumption are driving the development of gasoline engines towards lean combustion. Increasing ignition energy has been considered an effective way to achieve lean operation conditions. To further improve the lean limit of engine combustion, the influence of the spark plug orientation on the combustion stability under lean operation should be explored. In this investigation, the original machine spark plug orientation, 90 degrees clockwise rotation, and 180 degrees clockwise rotation are studied to analyze the impact of spark plug orientation. The combustion experiment was carried out under the condition of low excess air ratio of the original machine and high excess air ratio with a 450 mA high energy ignition.
Technical Paper

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

2020-04-14
2020-01-0294
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated. Measurements indicate that the optimization of spark timing has a significant impact on its performance.
Technical Paper

Numerical Investigation of the Effects of Port Water Injection Timing on Performance and Emissions in a Gasoline Direct Injection Engine

2020-04-14
2020-01-0287
Port water injection is considered as a promising strategy to further improve the combustion performance of internal combustion engines for its benefit in knock resistance by reducing the cylinder temperature. A thorough investigation of the port water injection technique is required to fully understand its effects on the engine combustion process. This study explores the potential of the port water injection technique in improving the performance of a turbo charged Gasoline Direct Injection engine. A 3D computational fluid dynamics model is applied to simulate the in-cylinder mixing and combustion for this engine both with and without water injection. Different water injection timings are investigated and it is found that the injection timing greatly effects the mass of water which enters the combustion chamber, both in liquid and vapor form.
Technical Paper

Effect of Injection Pressure on Nozzle Internal Flow and Jet Breakup under Sub-Cooled and Flash Boiling Test Conditions

2019-04-02
2019-01-0286
Injection pressure plays a vital role in spray break-up and atomization. High spray injection pressure is usually adopted to optimize the spray atomization in gasoline direct injection fuel system. However, higher injection pressure also leads to engine emission problem related to wall wetting. To solve this problem, researchers are trying to use flash boiling method to control the spray atomization process under lower injection test conditions. However, the effect of injection pressure on the spray atomization under flash boiling test condition has not been adequately investigated yet. In this study, quantitative study of internal flow and near nozzle spray breakup were carried out based on a two-dimensional transparent nozzle via microscopic imaging and phase Doppler interferometery. N-hexane was chosen as test fluid with different injection pressure conditions. Fuel temperature varied from 112°C to 148°C, which covered a wide range of superheated conditions.
Technical Paper

A Study of Energy Enhanced Multi-Spark Discharge Ignition in a Constant-Volume Combustion Chamber

2019-04-02
2019-01-0728
Multi-spark discharge (MSD) ignition is widely used in high-speed internal combustion engines such as racing cars, motorcycles and outboard motors in attempts to achieve multiple sparks during each ignition. In contrast to transistor coil ignition (TCI) system, MSD system can be greatly shortened the charging time in a very short time. However, when the engine speed becomes higher, the ignition will be faster, electrical energy stored in the ignition system will certainly become less, especially for MSD system. Once the energy released into the spark plug gap can’t be guaranteed sufficiently, ignition will become more difficult, and it will get worse in some harsh environment such as strong turbulence or lean fuel conditions. With these circumstances, the risks of misfire and partial combustion will increase, which can deteriorate the power outputs and exhaust emissions of internal combustion engine.
Technical Paper

Characteristics of Impinging Spray and Corresponding Fuel Film under Different Injection and Ambient Pressure

2019-04-02
2019-01-0277
It has been found that the spray impingement on piston for SIDI engines significantly influences engine emission and combustion efficiency. Fuel film sticking on the wall will dramatically cause deterioration of engine friction performance, incomplete combustion, and substantial cycle-to-cycle variations. When increasing the injection pressure, these effects are more pronounce. Besides, the ambient pressure also plays an important role on the spray structure and influences the footprint of impinging spray on the plate. However, the dynamic behavior of impinging spray and corresponding film was not investigated thoroughly in previous literature. In this study, simultaneous measurements of macroscopic structure (side view) and its corresponding footprint (bottom view) of impinging spray was conducted using a single-hole, prototype injector in a constant volume chamber.
Technical Paper

Study of Flash Boiling Spray Combustion in a Spark Ignition Direct Injection Optical Engine Using Digital Image Processing Diagnostics

2019-04-02
2019-01-0252
Flash boiling spray has been proven to be a useful method in providing finer fuel droplet and stronger evaporation in favor of creating a homogeneous fuel-air mixture. Combustion characteristics of flash boiling spray are thus valuable to be investigated systematically for aiding the development of efficient internal combustion system. An experimental study of flash boiling spray combustion in a SIDI optical engine under early injection has been conducted. The fuel, Iso-octane, was used across all tests. Three fuel spray conditions experimented in the study: normal liquid, transitional flash boiling and flare flash boiling sprays, within each case that Pa/Ps ratio was set in (>1), (0.3~1), and (<0.3) respectively. A small quartz insert on the piston enables optical access for observing combustion process; non-intrusive measurements on flame radicals has been carried out using a high-speed color camera.
Technical Paper

Contrary Effects of Nozzle Length on Spray Primary Breakup under Subcooled and Superheated Conditions

2018-04-03
2018-01-0302
Nozzle length has been proven influencing fuel spray characteristics, and subsequently fuel-air mixing and combustion processes. However, almost all existing related studies are conducted when fuel is subcooled, of which fuel evaporation is extremely weak, especially at the near nozzle region. In addition, injector tip can be heated to very high temperature in SIDI engines, which would trigger flash boiling fuel spray. Therefore, in this study, effect of nozzle length on spray characteristics is investigated under superheated conditions. Three single-hole injectors with different nozzle length were studied. High speed backlit imaging technique was applied to acquire magnified near nozzle spray images based on an optical accessible constant volume chamber. Fuel pressure was maintained at 15 MPa, and n-hexane was chosen as test fuel.
Technical Paper

Multi-Objective Adjoint Optimization of Flow-Bench Port Geometry

2018-04-03
2018-01-0772
The combustion efficiency of direct injection engines is largely dependent upon the mixing of fuel in air, thereby creating a combustible mixture. Such a process is highly dependent upon the motion of the charge in the cylinder. The shape of the intake runners and valves determines the charge motion generated within the engine. Swirl and tumble, generated along the vertical and horizontal axis respectively, govern the charge motion and hence distribution of combustible mixture. Unlike traditional parametric optimization where the parameter space has to be predetermined, adjoint optimization utilizes the gradient of objective functions obtained from a computational fluid dynamics solution to modify the shape of the original CAD geometry. During the optimization process, specific parts of the geometry can be morphed in any direction freely. The final design is a fluid volume generated as a result of such adjoint computations.
Technical Paper

Optimization-Based Control Strategy for Large Hybrid Electric Vehicles

2018-04-03
2018-01-1030
Electric vehicles (EVs) have become a hot research topic due to the petroleum crisis and air pollution issues, and Hybrid EVs (HEVs) equipped with engines and motors are popular nowadays due to their advantage over Pure EVs. The energy distribution between the engine and the motor is the major task of the control strategy or energy management for HEVs. Rule-based and optimization-based approaches are developed in this area, but not much work has been done for large-size super-capacitor (SC) equipped HEVs, like Hybrid buses. In this paper, a new optimization-based control strategy for a hybrid bus equipped with SCs as the energy regeneration system is presented. Considering the driving patterns of a bus that is of frequent accelerations and decelerations, it is proposed to characterize each time instant by its speed and acceleration, and the energy distribution is optimized based on these two state variables.
Journal Article

Effects of Journal Roundness Phase and Amplitude on Lubrication of Engine Bearings with Consideration of Straightness

2017-03-28
2017-01-1313
Manufacturing tolerances are inevitable in nature. For the bearings used in internal combustion engines, the manufacturing tolerances of roundness, which is of the micron scale, can be very close to the bearing radial clearance, and as a result the roundness could affect the lubrication of the bearings and thus affecting the friction loss of the engine. However, there is insufficient understanding of this mechanism. This study aims to find out the effects of the amplitude and the phase of journal roundness in the shape of ellipse on the lubrication of engine bearings. The elastohydrodynamic (EHD) theory is applied to model the bearing since the EHD model takes account of the elastic deformation of the journal and the bearing shell. The analysis of the DOE results shows the existence of roundness can be beneficial to the lubrication in some cases.
Technical Paper

Distortion Mapping Correction of In-Cylinder Flow Field Measurements through Optical Liner Using Gaussian Optics Model

2017-03-28
2017-01-0615
Combustion efficiency of internal combustion engine is closely influenced by the air flow pattern in the engine cylinder. Some researchers use high-speed particle image velocimetry to visualize and measure the temporally and spatially resolved in-cylinder velocity flow fields in the optically assessable engine. However, the transparent cylindrical liner makes it difficult to accurately determine the particle displacements inside the cylinder due to the optically distorted path of scattering light from seeding particles through the curved liner. To correct for the distortion-induced error in the seeding particle positions through the optical liner, the distortion mapping function is modeled using the Gaussian optics theory. Two artificial flow patterns with 5 by 5 vectors were made to illustrate the mapping correction. Distortion-induced error of velocity vectors was precisely mapped in six different planes inside the cylinder.
Technical Paper

Diesel Spray Characterization at Ultra-High Injection Pressure of DENSO 250 MPa Common Rail Fuel Injection System

2017-03-28
2017-01-0821
High fuel injection pressure has been regarded as a key controlling factor for internal combustion engines to achieve good combustion performance with reduced emissions and improved fuel efficiency. For common-rail injection system (CRS) used in advanced diesel engines, fuel injection pressure can often be raised to beyond 200 MPa. Although characteristics of diesel spray has been thoroughly studied, little work has been done at ultra-high injection pressures. In this work, the characteristics of CRS diesel spray under ultra-high injection pressure up to 250 MPa was investigated. The experiments were conducted in an optically accessible high-pressure and high-temperature constant volume chamber. The injection pressure varied from 50 MPa to up to 250 MPa. Both non-evaporating condition and evaporating condition were studied. A single-hole injector was specially designed for this investigation.
Technical Paper

Multi-Objective Tolerance Optimization Considering Friction Loss for Internal Combustion Engines

2017-03-28
2017-01-0250
Manufacturing of the internal combustion engines (ICEs) has very critical requirements on the precision and tolerance of engine parts in order to guarantee the engine performance. As a typical complex nonlinear system, small changes in dimensions of ICE components may have great impact on the performance and cost of the manufacturing of ICES. In this regard, it is still necessary to discuss the optimization of the tolerance and manufacturing precision of the critical components of ICEs even though the tolerance optimization in general has been reported in the literature. A systematic process for determining optimal tolerances will overcome the disadvantages of the traditional experience-based tolerance design and therefore improve the system performance.
Journal Article

Multi-Disciplinary Tolerance Optimization for Internal Combustion Engines Using Gaussian Process and Sequential MDO Method

2016-04-05
2016-01-0303
The internal combustion engine (ICE) is a typical complex multidisciplinary system which requires the support of precision design and manufacturing. To achieve a better performance of ICEs, tolerance assignment, or tolerance design, plays an important role. A novel multi-disciplinary tolerance design optimization problem considering two important disciplines of ICEs, the compression ratio and friction loss, is proposed and solved in this work, which provides a systematic procedure for the optimal determination of tolerances and overcomes the disadvantages of the traditional experience-based tolerance design. A bi-disciplinary analysis model is developed in this work to assist the problem solving, within which a model between the friction loss and tolerance is built based on the Gaussian Process using the corresponding simulation and experimental data.
Technical Paper

Cycle-to-Cycle Analysis of Swirl Flow Fields inside a Spark-Ignition Direct-Injection Engine Cylinder Using High-Speed Time-Resolved Particle Image Velocimetry

2016-04-05
2016-01-0637
The cycle-to-cycle variations of in-cylinder flow field represent a significant challenge which influence the stability, fuel economy, and emissions of engine performance. In this experimental investigation, the high-speed time-resolved particle image velocimetry (PIV) is applied to reveal the flow field variations of a specific swirl plane in a spark-ignition direct-injection engine running under two different swirl air flow conditions. The swirl flow is created by controlling the opening of a control valve mounted in one of the two intake ports. The objective is to quantify the cycle-to-cycle variation of in-cylinder flow field at different crank angles of the engine cycle. Four zones along the measured swirl plane are divided according to the positions of four valves in the cylinder head. The relevance index is used to evaluate the cycle-to-cycle variation of the velocity flow field for each zone.
X