Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Judging the Stopping Capability of Commercial Vehicles Using the Results of a Performance-Based Brake Force Measurement

1998-11-16
982830
The ability of performance-based brake testers (PBBTsa) to accurately determine the braking capability of commercial vehicles was investigated through a field study of over 2,800 trucks and buses. Under certain conditions, good agreement was found between the observation of brake-related defects by visual inspection and the measurement of weak brake forces by a PBBT. It was determined that the PBBTs' assessment was an independent measure of a vehicle's as-is braking capability, and should not be expected to correlate well with a visual inspection under any condition. It was also determined that predictions of stopping capability should be possible combining the PBBT results of the brake force and axle load measurements with certain assumptions regarding brake application time and road/tire coefficient of friction.
Technical Paper

The Dynamics of Previously Conducted Full-Scale Heavy Vehicle Rollover Crashes

2003-11-10
2003-01-3384
The impact dynamics of full-scale heavy-vehicle rollover events were quantitatively evaluated. Videotapes of a variety of rollover events were collected. One tractor-semitrailer combination was rolled by a sudden steer, two combinations rolled after a barrier impact, and one straight truck was pulled down an embankment. The videotapes were analyzed to estimate the vehicles' roll rates and their vertical velocities upon striking the ground. These experimental values corroborate the results of vehicle dynamic simulations that had been previously conducted to replicate actual rollover crashes. Those crashes were the subject of an NTSB Special Investigation Report that examined the crashworthiness of cargo tank trucks carrying hazardous materials.
Technical Paper

The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

2001-05-14
2001-01-2068
This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Statistical Design and Analysis Methods for Evaluating the Effects of Lubricant Formulations on Diesel Engine Emissions

2003-05-19
2003-01-2022
The Advanced Petroleum-Based Fuels - Diesel Emissions Control (APBF-DEC) project is a joint U.S. government/industry research effort to identify optimal combinations of fuels, lubricants, engines, and emission control systems to meet projected emissions regulations during the period 2000 to 2010. APBF-DEC is conducting five separate projects involving light- and heavy-duty engine platforms. Four projects are focusing on the performance of emission control technologies for reducing criteria emissions using different fuels. This project is investigating the effects of lubricant formulation on engine-out emissions (Phase I) and the resulting impact on emission control systems (Phase II). This paper describes the statistical design and analysis methods used during Phase I of the lubricants project.
Technical Paper

V2V Next Steps: A Proposal for Simplification of V2V Safety Systems

2013-04-08
2013-01-0982
Much good work has been done in recent years by the National Highway Traffic and Safety Administration (NHTSA) in the design, specification, and testing of potential future Vehicle-to-vehicle (V2V) safety systems that will provide early warning of impending hazards to drivers. During this same time, Industry has been hard at work developing autonomous crash avoidance systems, based solely on data gathered from in-vehicle sensors. This paper proposes a fusion of V2V cooperative safety systems and in-vehicle sensor-based systems to increase the effectiveness of both systems and provide incentive to speed adoption of Dedicated Short Range Communication (DSRC) based V2V safety systems. The proposed solution may be used to provide many of the benefits of V2V safety applications while simplifying the deployment of these systems significantly as it does not require the robust infrastructure of the complete NHSTA proposed system currently under test.
Technical Paper

Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

2009-11-02
2009-01-2723
Tests were conducted during 2008 on 16 late-model, conventional vehicles (1999 through 2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing as it was considered to more accurately represent real-world acceleration rates and speeds than the Federal Test Procedure (FTP) used for emissions certification testing. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the aggregate 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both NMHC and CO and increases in average emissions of ethanol and aldehydes.
Technical Paper

Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOX Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

2006-04-03
2006-01-0425
Increasing fuel costs and the desire for reduced dependence on foreign oil have brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. One of the obstacles to the increased use of diesel engines in this platform is the Tier 2 emission standards. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies-such as common rail fuel injection systems, low-sulfur diesel fuel, oxides of nitrogen (NOX) adsorber catalysts or NACs, and diesel particle filters (DPFs)-allows for the development of powertrain systems that have the potential to comply with these future requirements. In support of this, the U.S. Department of Energy (DOE) has engaged in several test projects under the Advanced Petroleum Based Fuels-Diesel Emission Control (APBF-DEC) activity [1, 2, 3, 4, 5].
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Performance of a NOx Adsorber Catalyst/Diesel Particle Filter System for a Heavy-Duty Engine During a 2000-Hour Endurance Test

2005-04-11
2005-01-1760
In this study, a 15-L heavy-duty diesel engine and an emission control system consisting of diesel oxidation catalysts, NOx adsorber catalysts, and diesel particle filters were evaluated over the course of a 2000 hour aging study. The work is a follow-on to a previously documented development effort to establish system regeneration and sulfur management strategies. The study is one of five projects being conducted as part of the U.S. Department of Energy's Advanced Petroleum Based Fuels - Diesel Emission Control (APBF-DEC) activity. The primary objective of the study was to determine if the significant NOx and PM reduction efficiency (>90%) demonstrated in the development work could be maintained over time with a 15-ppm sulfur diesel fuel. The study showed that high NOx reduction efficiency can be restored after 2000 hours of operation and 23 desulfation cycles.
Technical Paper

Engineering Requirements for Culturing of Hydrogenomonas Bacteria

1967-02-01
670854
Experimental results obtained with a continuous culture system for the cultivation of Hydrogenomonas eutropha for waste management in a life-support system indicate that a reliable and stable system can be designed under the present state-of-the-art. The present system provides for control of hydrogen, oxygen, carbon dioxide, pH, cell density, temperature, urea, and ammonia during growth. The culture system design is adaptable to operation in a zero-gravity field, and should be adaptable to integration with proposed water electrolysis and product recovery systems for waste management in an overall life support system.
Technical Paper

Assessing Fuel Cell Power Sustainability

2000-04-26
2000-01-1490
In recent years alternative automobile power technologies have received increased attention from OEM's, special interest groups, and the public. Plausible power technologies now include internal combustion engines, batteries, fuel cells, and a variety of hybrid technologies. The merits of each of these technologies as a means to move personal and fleet transportation into the next century have been highly debated. One technology that has emerged as a viable alternative to the internal combustion engine is the fuel cell. Considering arguments on all sides of the debate, the authors describe the results of a systematic, focused examination of the sustainability of fuel cells for transportation and discuss strategies for sustainable technology design. Sustainable technologies are those that contribute to preserving or improving societal quality, the environment, and the economy for future generations.
Technical Paper

Safety and Industrial Hygiene Issues Related to the Use of Oxygenates in Diesel Fuel

1999-05-03
1999-01-1473
Several candidate oxygenates have been proposed for use with diesel fuel. This paper examines the safety and health issues associated with the use of these oxygenates. The primary fire safety hazard associated with the use of oxygenates is increased diesel fuel volatility and consequent low flash point. Peroxide formation may be a hazard for some oxygenates, but no quantitative information on the extent of the hazard was located for any of the candidate oxygenates. Little information is available on inhalation, ingestion, or skin exposure toxicity hazards. Of the candidate ethers, only pentyl ether, 2-ethoxyethyl ether (diethyl carbitol), and dibutoxymethane (butylal) do not have low flash points or significant known toxicity problems.
X